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Abstract

Social scientists often want to analyze data that contains sensitive personal infor-
mation that must remain private. However, common techniques for data sharing that
attempt to preserve privacy either bring great privacy risks or great loss of informa-
tion. A long literature has shown that anonymization techniques for data releases
are generally open to reidentification attacks. Aggregated information can reduce but
not prevent this risk, while also reducing the utility of the data to researchers. Even
publishing statistical estimates without releasing the data cannot guarantee that no sen-
sitive personal information has been leaked. Differential Privacy, deriving from roots
in cryptography, is one formal, mathematical conception of privacy preservation. It
brings provable guarantees that any reported result does not reveal information about
any one single individual. In this paper we detail the construction of a secure curator
interface, by which researchers can have access to privatized statistical results from
their queries without gaining any access to the underlying raw data. We introduce
differential privacy and the construction of differentially private summary statistics.
We then present new algorithms for releasing differentially private estimates of causal
effects and the generation of differentially private covariance matrices from which any
least squares regression may be estimated. We demonstrate the application of these
methods through our curator interface.
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1 Introduction

Social scientists often want to analyze data that contains information that must remain
private. This private information might cause economic harm to subjects if leaked publicly,
as in data that contains medical information, histories of drug use, or illicit behavior. Or it
might result in shame to subjects, if they have revealed to the researcher past victimization
or unpopular political opinions. Or even if no shame or harm results, violating the trust of
subjects by making confidential information public may make them less likely to continue
in future studies. In addition to ethical, disciplinary and professional norms, institutional
review boards may impose additional restrictions on researchers to safeguard against legal
liability. The increasing ability of big data collections, sensor data, and social media data to
measure individual behavior in nuance, ensures that such privacy concerns will only increase.
For all these reasons, researchers who generate new sources of data are responsible for using
and releasing the data in ways that do not compromise the privacy of the subjects.

In tension with these strong ethical reasons to preserve privacy are the strong scientific
imperatives to make data increasingly open and available. Science relies on the open ex-
amination of previous findings [1]. Data sharing and data archiving are often requirements
of the funding sources to collect the data [2] and the publication venues of the generated
research [3]. Studies that release their data are more likely themselves to be cited [4]. In the
words of Crosas et al. [5],

“Accessible and reusable data are fundamental to science in order to continu-
ously validate and build upon previous research. Progressive expansive scientific
advance rests upon access to data accompanied with sufficient information for re-
producible results, a scientific ethic to maximize the utility of data to the research
community, and a foundational norm that scientific communication is built on
attribution.”

This tension leads researchers to explore methods that they believe allow for data distribu-
tion, while maintaining the privacy of research subjects.

However, common techniques for data sharing that attempt to preserve privacy either
bring great privacy risks or great loss of information. A long literature has shown that
anonymization techniques for data releases are generally open to reidentification attacks[6,
7, 8]. Aggregated information can reduce but not prevent this risk, while also reducing
the utility of the data to researchers [9, 10, 11]. Even publishing statistical estimates with-
out releasing the data cannot guarantee that no sensitive personal information has been
leaked[11].

At the other end of sharing, researchers who are interested in analyzing sensitive data
collected by others often require a great degree of effort before getting any exploratory access
to the data. They often require approval from an Institutional Review Board or travel to a
secure location, or construction of non-networked environments for data storage. Since there
is often no ex ante statistical information available for sensitive data, the requester may not
know the extent to which the data will be useful for addressing her research question, or
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whether the data even contain the correct information to answer the question of interest
or test the proposed hypothesis. Thus, she must make a relatively uninformed decision
to file for access, with a significant chance that upon access the effort will prove fruitless.
The difficult balancing act between privacy and open science on the part of data collectors,
and the significant burden on data consumers of even exploratory access to find the correct
private data sources, are problems that any capable framework for privacy preservation
should alleviate.

Differential Privacy, deriving from roots in cryptography, is one formal, mathematical
conception of privacy preservation. It guarantees that any reported result does not reveal
information about any one single individual [12, 13]. That is, the distribution of answers one
would get with differentially private (DP) algorithms from a dataset that does not include
myself must be indistinguishable from the distribution of answers where I have added my own
information. These algorithms inject a precisely calculated quantity of noise to any statistical
query to mask the possible contribution of any one individual to the result. It is provable
that no possible combination of queries or model results can tease out the information of
any individual.

While the theoretical literature over the last decade has developed DP algorithms for
many different tasks, practical implementations are few and narrowly tailored to specific use
cases. Moreover, while all DP algorithms are proven not to leak personal information, few
results exist about their utility to provide useful results to researchers, or their effects on
bias and efficiency of future inferences.

We present new work to make the theoretical advances of differential privacy practical to
social science researchers, and to bridge the mathematical results into broadly useful tools
for data sharing.

We make three contributions. First, we tailor the mechanisms of differential privacy to the
release of causal estimates, particularly difference of means estimators, their standard errors
and confidence intervals, and the consequences of pairwise matching. Second, we present
the development of a new algorithm for the generation of differentially private covariance
matrices. Since any least squares regression may be estimated from a dataset’s covariance
matrix, this is particularly useful for statistical inference and for more accurate statistical
exploration of datasets containing private information. Third, we detail the construction of
a secure curator interface, by which researchers can have access to statistical results from
their queries, without gaining any access to the underlying raw data. We demonstrate the
application of these methods through our curator interface.
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2 Differential Privacy

Private or sensitive data may be loosely defined as data that, if known, can cause harm to
an individual. Researchers who collect data on human subjects are often collecting sensitive
data and require approval from their Institutional Review Board (IRB) to conduct their
research. Once a dataset has been labeled by an IRB as containing sensitive information, it
is the responsibility of the researcher to ensure data privacy. That is, the researcher must
not take actions the compromise the privacy of his or her research subjects.

In the social sciences, a large and growing number of datasets contain sensitive informa-
tion. The state of practice for managing data privacy concerns has been to publish accurate
statistical estimates and then either (a) make the data inaccessible to others (data jailing)
or (b) strip the personally identifiable information (PII) and release the data. Neither ap-
proach is both conducive to good scientific practice and sufficiently responsible. Additionally,
in both cases aggregate statistical estimates are reported with perfect accuracy, a practice
that is not sufficient to guarantee data privacy.

When working with sensitive data, individual-level statistical information is generally
avoided, and accurate, aggregate statistical information is generally published. While this
will preserve privacy in many cases, it does not guarantee privacy preservation in all cases
[9, 10, 11]. In short, every time statistical estimates are released, we increase the likelihood
of learning a piece of sensitive information. As results accumulate over time, that likelihood
increases. The US Census and Eurostat, the European Union’s official statistical agency,
only publish select aggregate statistics for precisely this reason.

The risk of releasing sensitive information through the publication of aggregate statistics
is not negligible, but it is minimal. In many cases, especially when the data are only mildly
sensitive, we might be willing to accept some risk and report the true estimates. More
detrimental to scientific progress is the practice of data jailing. Restricting access to data
severely limits what may be learned from future analysis. Researchers interested in using
the data may find the costs for accessing it prohibitively expensive or the paperwork to be
exceedingly time-consuming. It also makes scientific replication difficult, if not impossible.
It is a hindrance to scientific progress.

Rather than restricting access to the sensitive data, it is more common for researchers to
anonymize a dataset by stripping all PII, and then to release the supposedly sanitized data.
Examples of PII include the subject’s name, address, or social security number. However,
as shown in [6, 7, 8], it is often possible to re-identify individuals through linkage attacks.
A linkage attack is when a dataset that contains sensitive information and has had all PII
stripped is successfully linked to another dataset that does not contain sensitive information
and has not had its PII stripped. For example, one study has found that “87% (216 million
of 248 million) of the population in the United States had reported characteristics that likely
made them unique based only on {5-digit ZIP, gender, date of birth}” [14, 1].

Due to the potential for reidentification, the Health Insurance Portability and Account-
ability Act specifies 18 identifiers of Personal Health Information that are required to be
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stripped from a dataset before release.1 However, stripping the 18 HIPAA identifiers provides
no provable guarantee of privacy. Furthermore, as more sensor and other individual-level
data becomes available, it is increasingly likely that arbitrary attributes can and will be used
to identify research subjects–even when all PII is redacted.

An alternative solution to data jailing and de-identifying is to allow statistical queries
through a secure curator interface. In such a system, researchers may query the data but
never actually have access to the raw data. From the researcher’s perspective, this can be
equally as advantageous as releasing de-identified data since those who wish to analyze the
data may still do so. Statistical analyses are replicable. However, the risk to data privacy
remains [15]. Differencing attacks and restructuring attacks are examples of ways in which
an adversary may acquire knowledge that should remain private [11]. In short, any system
for releasing statistical estimates simply cannot respond with perfect accuracy to any and all
queries and still guarantee that privacy is being preserved. Rather, such systems either audit
the queries, perturb the data, or perturb the statistical estimate [11]. The safest approach,
and the one we further explore and expand, to to perturb the estimate using the guarantee
of differential privacy.

Differential privacy is a recently developed notion of privacy preservation that guarantees
that no individual’s privacy is compromised by the released information. The general idea
is to add noise that is proportional to the sensitivity of the true estimate [12]. The sensi-
tivity of an estimate is the theoretical range of values that can be observed in neighboring
datasets. Neighboring datasets are defined as two datasets that differ by at most one row. By
guaranteeing differential privacy, we guarantee that the perturbed estimate may be observed
regardless of the presence or absence of any individual in the data.

2.1 Definition

Consider a mechanism, M , that gets potentially sensitive data about individuals as input
and performs some computation over the data. Our notion of computation is very broad
and includes any procedure for transforming data into some output. Examples range from
the calculation of summary statistics, to regression estimates, to an application of statistical
disclosure limitation technique (such as de-identification) aimed at producing a version of
the data that is considered safe to share or disclose.

Consider a function, T , whose output is an event, b, from a discrete set of events, B.
Each event in B has some probability associated with it, and the probabilities sum to 1.
Below, T is discussed in the case where B is simply yes or no, or 0 or 1, but this may be
easily generalized. The input to T might include the output of the differentially private
mechanism, M , and/or any auxiliary information. We need to know neither the auxiliary
information nor how T determines which event to return. Differential privacy provides a
guarantee on what can be learned by incorporating the output ofM into the input of T . For
example, T might be whether a person possesses a trait, Pr[T] is our belief about whether a

1For a complete list of identifiers, see the Health Insurance Portability and Accountability Act or visit
http://privacyruleandresearch.nih.gov.
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person possesses a trait, and M might reveal how many people in the data have that trait.
Given neighboring datasets A and A′, the definition of a differentially private mechanism

provides the guarantee that:

Pr[T (M(A)) = 1] ≤ eεPr[T (M(A′)) = 1] + δ, ∀ T. (1)

By neighboring we mean precisely that datasets A and A′, differ by at most one obser-
vation. This may be any theoretically possible observation. For example, observation i in
A′ might be redefined to be the minimum (or maximum) theoretical value for each variable.
Thus, by masking the contribution of any single individual to the output of M , differential
privacy guarantees that the results from M(A) and M(A′) are nearly indistinguishable.

Differential privacy provides us with a quantifiable “shaded” measure of privacy; epsilon
and delta quantify “privacy loss” and can be mathematically related to the excess risk to an
individual that results from her data being used (lower values of epsilon and delta guarantee
lower risk). Of the two parameters, delta controls the probability that a bad privacy breach
event would happen, and should hence be kept so small (e.g., one in a billion) that we
will neglect it in our discussion below. The other parameter, epsilon, controls the “allowed”
privacy risk. Indirectly, epsilon also controls the accuracy to which the differentially private
computation can be performed – lower privacy risk comes with lower accuracy – and hence
epsilon cannot be chosen to be negligibly small as delta is. Rather, epsilon should be chosen
so as to allow a reasonable compromise between privacy and accuracy. In general, epsilon
should be thought of as a small number, say, between .001 and 1.

Epsilon controls the effect of each individual’s information on the outcome in the following
sense: differential privacy requires that, whether the mechanism is applied to the data with
or without John’s information included, the probability that T = 1 can change by a factor
of at most 1+epsilon = 1.01, i.e., each probability changes by at most 1% (this analysis
is approximate). To see what this property can be shown to imply, consider John who is
worried about the social consequences he would face if his political affiliation became known.
In this example, T = 1 means John’s political affiliation becomes known. Say the probability
that John’s political affiliation becomes known is .05 (PR[T = 1] = .05). Then, if we set
epsilon to be .01, differential privacy guarantees that the probability of John’s political
affiliation becoming known would not increase to more than 5.05 as a result of learning the
output of the differentially private mechanism, M . This is true regardless of whether John’s
information is in the data.

A bound on the change in the probability of T , a function which we know nothing about,
is quite counterintuitive. However, it is a very strong guarantee and much of the appeal
of differential privacy is a result of this guarantee. If we think about M(A) and M(A′),
the calibrated noise that has been added the output in both situations ensures that the
distribution of answers is nearly identical.

In the following, Xi is whether or not individual i has attribute X. T is the function
that an adversary would use to determine if Xi = 1. T tells us whether Xi = 1. Pr[T] is our
belief about whether Xi = 1. An application of Bayes’ Rule provides the following result:
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Pr[Xi = 1|T (M(A)) = y] =
Pr[T (M(A)) = y|Xi = 1]Pr[Xi = 1]

Pr[T (M(A)) = y|Xi = 1]Pr[Xi = 1] + Pr[T (M(A)) = y|Xi = 0]Pr[Xi = 0]

=
Pr[T (M(A)) = y|Xi = 1]Pr[Xi = 1]

Pr[T (M(A)) = y|Xi = 1](Pr[Xi = 1] + Pr[T (M(A))=y|Xi=0]Pr[Xi=0]
Pr[T (M(A))=y|Xi=1]

)

=
Pr[Xi = 1]

Pr[Xi = 1] + Pr[Xi = 0]Pr[T (M(A))=y|Xi=0]
Pr[T (M(A))=y|Xi=1]

=
Pr[Xi = 1]

Pr[Xi = 1] + Pr[Xi = 0]e±ε

≤ Pr[Xi = 1]

Pr[Xi = 1] + (1− Pr[Xi = 1])e−ε

(2)
We are comparing two worlds, one in which we have no information and one in which

we have differentially private information. Differential privacy guarantees that Pr[T = 1],
considered our prior, can change by at most 100∗prior

prior+e−ε(100−prior) .

Table 1: Interpreting Epsilon

Pr[T = 1] epsilon
.01 .05 .1 .2 .5 1

1 1.01 1.05 1.1 1.22 1.64 2.67
5 5.05 5.24 5.5 6.04 7.98 12.52
10 10.09 10.46 10.94 11.95 15.48 23.2
25 25.19 25.95 26.92 28.93 35.47 47.54
50 50.25 51.25 52.5 54.98 62.25 73.11
75 75.19 75.93 76.83 78.56 83.18 89.08
90 90.09 90.44 90.86 91.66 93.69 96.07
95 95.05 95.23 95.45 95.87 96.91 98.1
99 99.01 99.05 99.09 99.18 99.39 99.63

Upper bound on Pr[T = 1|T (M(A))]

Note: Cell values, excluding epsilon values, are percentages. They are calculated
as 100∗prior

prior+e−ε(100−prior) .

More generally, Table 1 shows the effect of different epsilon values on our belief that
T = 1. The left column is our prior belief that T = 1. Each column to the right contains
an upper bound on our updated belief having learned M(A). For example, if there is a 99%
chance of John’s political affiliation being known, and then we learn M(A) with an epsilon
of 0.5, then our belief about John’s political affiliation can become at most 99.39%.

The more computations John participates in, the higher the risk is for his privacy. Having
a quantified measure of privacy is beneficial in understanding how this risk may accumulate,
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and differential privacy provides us with a bound on how risk accumulates across multiple
analyses. The exact analysis is beyond the scope of this document, but is known as compo-
sition theorems. As an example, suppose John participates in two analyses, each providing
risk parameter epsilon = 0.01. Differential privacy then entails that his overall risk amounts
to at most 2 ∗ epsilon = 0.02. We note that while differential privacy is not the only tech-
nique that quantifies risk, it is currently the only framework with quantifiable guarantees
on the risk resulting from composition. For example, in k-anonymity one may perceive k as
corresponding to risk, but one can demonstrate two k-anonymized datasets that in tandem
result in complete revelation of information.

Any differentially private estimates may be used as input to any algorithm and still retain
the privacy guarantee.

The conservation of epsilon across mechanisms amounts to the notion of a “privacy bud-
get” where a dataset contains a global epsilon that may be dispersed among all mechanisms
one wishes to compute with that dataset. The privacy budget is discussed in more detail in
our discussion of the secure curator interface.
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3 Privacy Preserving Summary Statistics

Much of the theory of differential privacy is grounded in counting queries on databases2.
From this, differentially private summary statistics have been developed for a large number
of algorithms, including common summary statistics such as the mean, median, mode and
quantiles. Prior to turning to our own work on mechanisms to release differentially private
causal and regression estimates, we illustrate one such mechanism for releasing a differentially
private mean of a variable.

The Laplace distribution provides a commonly used mechanism for creating differen-
tially private versions of simple, univariate, continuously valued statistics, and is a useful
demonstration of a privacy preserving mechanism. Let us consider calculating a mean for
N observations of a variable, X, in a private dataset. Assume we want to report a version
of the mean of that variable that obeys the definition of differential privacy above. Differ-
ential privacy requires that no information about any individual can be leaked, so first we
determine the sensitivity of the released statistic to the value of any one individual in the
dataset. Any function of the data, f(X), has a sensitivity, which we denote ∆f .

If the data is bounded between xmin and xmax, then a single individual would decrease
the mean the most if they are at the lower bound, and increase the mean the most if they are
at the upper bound. The difference between the mean of X when our hypothetical individual
is at the lower bound, and at the upper bound, is the largest possibly effect one individual
can have on this value, and thus gives us the sensitivity of the statistic. Since any individual
contributes xi/N to the mean, then the sensitivity here is:

∆f =
xmax − xmin

N
(3)

as depicted in figure 1. This is the absolute upper bound on how much a change in one
individual’s data can influence the statistic at hand. Intuitively, we want to guarantee that
we do not reveal information about any one individual by adding noise sufficient to mask
the largest possible contribution of any one individual.3

The Laplace is a convenient distribution to use for this noise, given the construction of
the definition of differential privacy. The Laplace has distribution function:

fLaplace(x|b, µ) =
1

2b
exp
(
− |x− µ|

b

)
(4)

with mean µ, and variance 2b2. The Laplace is a mirrored, and thus symmetric version
of the exponential distribution. The exponential is common to survival and event history

2That is, computing the number of observations in a dataset that obey a predicate, such as having a
particular combination of attributes.

3For example, if we knew that a variable had mean zero, except for John, whose value, xJ , we did not
know, then the mean would reveal John’s information. John would contribute xJ/N to the mean, and
xJ = x̄N . We want to add enough noise to the mean so that we no longer learn xJ even in this situation.
However, we don’t want to add so much noise that we can’t learn that the rest of the population has mean
close to zero, if we hadn’t known that.
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X̄(xi) =
∑

j 6=i
xj

N−1 + xmin
N

X̄(x′i) =
∑

j 6=i
xj

N−1 + xmax
N

xi = xmin

x′i = xmax
∆f

Figure 1: Sensitivity of the mean for a bounded variable.

models, which use its memoryless distribution4, which we are also about to exploit. To make
a continuous variable differentially private, we add a draw from a mean zero Laplace, with
parameter b as:

b =
∆f

ε
(5)

So our differentially private mean, M(X), which combines the "true" sample mean with
Laplace noise, becomes:

M(X) = X̄ + Y ; Y ∼ fLaplace(b = ∆f/ε, µ = 0) (6)

To check this mechanism meets the definition of differential privacy, consider some probability
of any outcome, z. The ratio of this probability between two adjacent datasets, is given by:

pr[M(X) = z]

pr[M(X ′) = z]
=
e
−ε|X̄−z|

∆f

e
−ε|X̄′−z|

∆f

= e
ε|X̄′−z|−ε|X̄−z|

∆f = e
ε|X̄′−X̄|

∆f ≤ eε (7)

the last step following since we know ∆f ≥ |X̄ ′ − X̄| by the definition of the sensitivity.
It thus follows that Pr[M(X) = z] ≤ eεPr[M(X ′) = z], thus meeting the definition of
ε-differential privacy (in this case, with parameter δ = 0). For other continuously valued
summary statistics, the same Laplace mechanism works for preserving privacy, however, the
analytic form for the sensitivity, ∆f , will change by statistic.

Dwork and Roth show a more general derivation of 7 which holds for any continuous
function, including multidimensional functions. Gaussian distributions can be used in place
of Laplace, for some small value of δ. As discussed in section 2.1, if a released statistic
is differentially private, then any transformation or post-processing of that statistic is also
privacy preserving; a generally useful construction then is to divide the range of a variable
into 2k equal partitions and create a perfect binary tree. Each of the 2k leaves contains the

4The hazard function of an exponential waiting time, as the ratio of two exponentials, is a constant.
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Figure 2: Two Laplace distributions, for two adjacent datasets X and X ′. The definition of
ε-differential privacy requires the ratio of M(X)/M(X ′) is not greater than eε for all points
along the x-axis. Thus for any realized output z – for example here, z = 1.3 – we can not
determine that X or X ′ were more likely to have produced z.

count of the number of observations in that partition, and each node contains the sum of the
two nodes (or leaves) directly below. All the nodes and leaves form a vector of length 2k+1−1
which can itself be made differentially private by the Laplace or Gaussian mechanisms. From
this tree, different combinations of nodes and leaves can give estimates to many forms of
useful summary statistics including means, medians, modes, quantiles, as well as density and
cumulative density graphs.
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4 Causal Inference

4.1 Randomized Experiments

Assume we wish to learn whether some binary variable, t, has a causal effect on a continuous
outcome, y. That is, any intervention that changes t would necessarily also result in a change
in y. Hypothetically, every individual might have a distribution of outcomes Y (1)i if ti is set
to 1, and Y (0)i if ti is 0. The causal effect we are interested in is the expected effect on Y
of t, or E[Y (1) − Y (0)]. Unfortunately, for every individual, we only observe one outcome,
y(t = 1) or y(t = 0).

If we have a population where individuals are randomly selected for treatment, then the
causal effect of treatment can be estimated as the average outcome among those randomly
selected for treatment compared to the average among those randomly assigned as control
observations. This difference of means estimator, is robust to many distributions of Y
and relationships to other causal factors. Importantly, while there may exist many other
variables that also cause Y , we do not need to control for their effect in our estimation,
as randomization allows that for any such auxiliary variable, their distribution among the
treatment observations should be approximately equal to their distribution among the control
observations. Thus their expected contributions to the two population means cancel.

4.2 Difference of Means

Assume each individual i experiences treatment ti ∈ {0, 1}. The observed outcome after
assignment to treatment, yi(ti), we will abbreviate here as yi. We will assume Y is bounded
in a known range ymin ≤ yi ≤ ymax. We can briefly describe summary statistics of two sub-
populations, the treated and control observations. The count, mean and standard deviation
are given by:

n1 =
∑

ti n0 =
∑

1− ti (8)

ȳ1 =

∑
tiyi
n1

ȳ0 =

∑
(1− ti)yi
n0

(9)

sd(y1) =

√∑
ti(yi − ȳ1)2

n1

sd(y0) =

√∑
(1− ti)(yi − ȳ0)2

n0

(10)

In appendix A, we derive the sensitivity of the difference of means estimator (theorem
A.1), as well as its standard error (lemma A.5). These are as follows:

Statistic Formula Sensitivity

Difference of Means y1 − y0
ymax−ymin
n1+1

+ ymax−ymin
n0+1

Standard Error of DofM
√

sd(y1)2

n1
+ sd(y0)2

n0

√
N∗−1
N∗3

(
ymax − ymin

)
where N∗ = min (n0, n1)
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We briefly provide an intuition about how these sensitivities are derived and show how
they are incorporated into a mechanism for preserving privacy, before demonstrating some
Monte Carlo experiments illustrating differentially private causal estimates.

Y - Outcome Dimension

T
-

Tr
ea

tm
en

t
D

im
en

si
on

T
=

0
T

=
1

ymin ymax

ȳ0

ȳ1

Figure 3: Sensitivity of difference of means test. The red movement changes ȳ1 less than
the blue movement. However, the red movement changes the difference in means value by a
greater quantity as it shifts in the opposite direction to the change in ȳ0.

As we have seen, sensitivity describes the largest possible change in a function’s value
that can result from arbitrarily changing any one individual’s values in the dataset. In
an experimental setting, changing one individual’s data means we might change both their
treatment ti and their outcome yi. In appendix A.2, we derive the sensitivity of the difference
of means test, and we show the logic of this proof in figure 3. This figure shows a dataset
of y on the horizontal and t on the vertical, with some example fixed data points in black.
Now we allow one observation to arbitrarily move across the space of the data, and our goal
is understand what possible movement creates the largest change in the difference of means
test ȳ1 − ȳ0.

In the fixed data in this example, we have control data that generally take on high values
of y, and observations under treatment that have low values of y; this suggests the causal
effect of treatment is to lower the outcome y. The means of the control and treated values
are denoted on the graph. Following section 3, the mean is most effected when we move an
observation across the range of the data from one bound to the opposite bound. The green
arrow represents movement of a control observation from the lower bound of y to the upper
bound. The corresponding change that this creates on the mean of the control observations
ȳ0 (which we know is (ymax − ymin)/N0) is shown by the related green arrow under ȳ0. This
is the largest effect we can have on ȳ0 from any arbitrary movement of one observation.
However, our goal is to determine the largest effect on the ȳ1 − ȳ0.
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The red and blue arrows represent moving this observation not only in y, but reassigning
it from control to treatment. When the observation is moved out of control, the mean ȳ0

still changes, because an outlier to the far left of the distribution has been removed; the blue
and red lines above ȳ0 measure how much the mean of the control changes. The blue arrow
shows a movement of our observation to both treatment and the upper bound of y. This has
a large change on the treatment mean, ȳ1 because it adds an outlier. So this movement from
(yi = ymin, ti = 0) to (yi = ymax, ti = 1) results in large changes in both the treatment and
control means, because it adds and removes an outlier from each, respectively. However, the
net effect on the difference of means estimate ȳ1 − ȳ0 is actually very small, because these
movements are in the same direction and thus cancel. That is, the movement shifts both ȳ1

and ȳ0 in the same direction, and changes their difference very little. The larger effect in
this data, is the movement denoted by the red arrow. Here we shift the observation in t but
not y, and the corresponding changes in the means are in opposite directions, magnifying
the effect on the difference in the means. In our proof, we show this is the form of movement
that has the largest effect on the difference of means test, and it has the largest effect when
the rest of the data is located at the opposite bound of y. This largest possible effect is the
sensitivity.

4.3 Differentially Private Mechanism for Difference of Means

With sensitivity for the difference of means test derived, we can construct a provably differ-
ential private release of this statistic by using the same mechanism as in section 3. That is,
we compute the difference of means in the private data, and then add Laplace noise to this
value with standard deviation proportional to the sensitivity we have derived. Here that
implies:

M(X) = ȳ1 − ȳ0 + Z; Z ∼ fLaplace(b = ∆f/ε, µ = 0); ∆f =
xmax − xmin

N1 + 1
+
xmax − xmin

N0 + 1
(11)

For which we can state a very simple algorithm for generating the release:

Algorithm 1: Differentially Private Difference of Means Estimate Estimate
1. Calculate ȳ1 − ȳ0

2. Calculate ∆f = xmax−xmin
N1+1

+ xmax−xmin
N0+1

3. Draw Z ∼ fLaplace(µ = 0, b = ∆f/ε)
4. Release M(X) = ȳ1 − ȳ0 + Z
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4.4 Monte Carlo Example

To demonstrate this privacy preserving mechanism, we simulate data to show the noise that
results. We assume outcome Y is bounded and generated from a latent value as:

Y (ti)
∗ = β0 + β1 ∗ ti + ν; ν ∼ N (0, 0.1) (12)
ti ∈ {0, 1}; t̄ = 0.5; β0 = 0.2; β1 = 0.6 (13)

Y (ti) =


0 Y (ti)

∗ < 0
Y (ti)

∗ 0 ≤ Y (ti)
∗ ≤ 1

1 Y (ti)
∗ > 1

(14)

where t is the experimental treatment. We simulate datasets of 2000 (1000 treated, 1000
control) observations and set ε = 0.5. In the top-left of figure 4, in blue we show the distri-
bution of difference of mean statistics estimated across 1000 simulated datasets. These are
the values computed in the Monte Carlo datasets with the private data. The distribution
comes from the sampling error of the finite sample. In red, is the distribution of differentially
private versions of the difference of means, in these same datasets. Comparing the distribu-
tions, the differentially private estimates are still unbiased, while the extra noise added by
differential privacy to these estimates increases the standard deviation by about 60 percent
(.0071 to .0044). A sixty percent increase in the standard error is what we would have seen
in the original estimator on the private data if the sample size had been reduced from 2000
to about 800 observations. So an interpretation of the utility cost of differential privacy in
this example, is that it results in answers as noisy as an 800 observation dataset, or put
another way, results in an effective sample size of 40 percent of the original dataset.

The center-top graph of figure 4 now shows these same two distributions plotted against
each other. If there was no Laplace noise added to the differentially private values, then
all the points would line up on the y = x line (shown dashed in blue), and so the vertical
distance of each point from this line is the draw from the Laplace that the estimate received
in that simulation. The distribution of all these Laplace draws is shown as a histogram in
the top-right graph, with the density from which they were drawn superimposed in red.

The second row of these plots show the same graphs but now for differentially private
versions of the standard error of the difference of mean test. On the bottom right we can see
that the variance of the Laplace noise that has been added is smaller (by about a factor of two)
than for the difference of mean itself (the graphs are on the same scale). This is because the
sensitivity is smaller. However, the center graph shows that even though we are adding less
noise, the standard errors are far less useful. The variance of the estimated standard errors
across the Monte Carlo samples is very small. Even though we are adding less Laplace noise
than before, as a ratio to the underlying variance of the sampling distribution, this noise is
overwhelming; The standard deviation of the differentially private standard error is 46 times
the standard deviation of the sampling distribution of private values of the standard error.
Moreover, the sample standard errors are close to zero, and when we construct differentially
private versions with Laplace noise, many of these –here 6.2 percent– become negative. If we
were using these standard errors in the denominator of a t-test we would have nonsensical
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Figure 4: Distributions of differentially private statistics of the difference of means estimate
(top row) and standard error of the difference of means (bottom row).
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answers. Although it is central to many mechanisms for differential privacy, this simulation
shows the Laplace is not a good distribution to use for privacy preservation of standard
errors. We demonstrate a new mechanism for privacy-preserving standard errors in the next
section.

4.5 Differentially Private Mechanism for Standard Errors

As we have seen, the Laplace mechanism creates usably accurate estimates of differences of
means, but the same privacy-preserving mechanism does not create usable standard errors.
The sampling distribution of the standard error is generally quite small. The sampling
distribution of the standard deviation collapses to the population standard deviation at a
rate of the order of 1/

√
n, while the standard error itself collapses to zero at a rate SD/

√
n

or order of 1/n. The sensitivity of the Laplace is order of 1/n, so the noise of the Laplace
mechanism is not converging to zero faster than the sampling distribution of the standard
error. Thus we see the error of the Laplace mechanism dominate the standard error, while
the sampling error dominated the calculation of the mean.

In this case, we want instead to turn to a new privacy mechanism that takes advantage of
the fast convergence of the standard error. This property means that quite small subsamples
from the dataset would themselves provide accurate estimates of the standard error. The
subsample and aggregate mechanism [16] can take advantage of the fact that subsamples of
the data provide accurate answers.

The subsample and aggregate algorithm [16] divides the dataset X into M subsets,
{X1, . . . XM}, of equal size. In each subset we compute a function fm = f(Xm). We then
choose a method to aggregate the M values of the function into one answer f̄ . The key
insight, is that each observation appears in only one subset, and thus can influence only one
fm. The advantage to exploit is that the original function f might have high sensitivity, but
the sensitivity now is the sensitivity of the aggregation method that creates f̄ rather than
f itself. The difficulty to avoid is that most mechanism reduce noise as a function of the
number of units and now M � N .

We use the Winzoring mean approach of Smith [17], which first computes a differentially
private version of a bound that captures some fraction of all the M values of f . It then
Winzorizes the values of f (that is, censors values beyond outside these bound to the limits
of the bounds) and then averages the Winzorized values. Winzorized means are robust
estimates of the means of Normally distributed random variables. As we have seen in section
3, computing a mean of N values over range R has sensitivity R/N . This approach pays off
if across the small samples, the Winzorized range R is sufficiently small to compensate for
the low value of N , which here is the number of subsamples the dataset can be divided into.
(The algorithm, following Smith [17] is given in appendix B).

Figure 5 shows our previous Monte Carlo where instead the privacy-preserving standard
errors are generated with the subsample and aggregate mechanism. The densities of the
estimates from the private data, and the differentially private estimates closely match, al-
though the differentially private standard errors are slightly attenuated. The top-center and
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Figure 5: Distributions of differentially private estimates of the standard error of the dif-
ference of means test, using the subsample and aggregate privacy mechanism. The top row
shows the distribution of privacy preserving standard errors on the same scale as in the pre-
vious figure 4 and shows how dramatically the noise of the distribution has collapsed. The
bottom row readjusts the axes so that the distribution can be seen as other than a spike.

top-right graphs are on the same scale as in figure 4 and shows how dramatically the noise of
the distribution has collapsed. On the previous scaling the differentially private values look
like a spike. The ratio of the respective standard deviations of the distributions has shrunk
from 42 to 1.2 times the standard deviation of the sampling distribtuion. The bottom row
of this figure rescales the axes so as to see more clearly the distributions. The slight mass
below the y = x line in the center graph is another way to visualize the attenuation of the
differentially private standard errors, while the distribution of noise in the bottom-right is
now a mixture of Laplaces, that still roughly resembles a Laplace distribution.
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Figure 6: The equivalent number of observations in a difference of means test, that would
create a sampling distribution of the same noise as a sample distribution of 2000 observations
under differential privacy, across different ranges of the privacy parameter ε. This parameter
is commonly below 1, and in that range the effective sample size decreases as approximately
3/4 ε n.

4.6 Effective Sample Sizes

We saw in the Monte Carlo example, for these particular parameter values, the variance of
the differentially private estimate with 2000 observations had the variance one would expect
from a difference of means estimate that did not preserve privacy, of 800 observations. We
can generalize this understanding of an effective sample size that results from differential
privacy. The variance of the difference of means estimator (ignoring the censoring) is:

Var(x̄1−0) =
sd(y1)2

n1

+
sd(y0)2

n0

=
4ν2

n
(15)

in our example where both the variance and number of observations is the same for both the
treatment and control observations. or the differentially private statistic the variance is:

Var(M(x)) = Var(x̄1−0) + Var(Z) =
4ν2

n
+ 2

∆f 2

ε2
=

4ν2

n
+

32R2

ε2n2
(16)

Where R, the range of the data is ymax − ymin = 1. Notice that the variance of Z collapses
as n2 while the variance of the difference of means test only collapses as n, thus these
distributions become relatively more close as n increases. From this we can solve for an
effective sample size, neff that results from differential privacy. The effective sample size is
a number of observations that would be required if we permitted access to the results from
the private data, so as to get the same standard error as the noisier results from differential
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privacy. Equations 15 and 16 combine to solve this as:

neff =
4ν2ε2n2

4ν2ε2n+ 32R2
(17)

We graph this in figure 6, for our Monte Carlo example (n = 2000, ν = 0.1, R = 1) across
all values of ε. For ε < 1, the section denoted in blue, the curve is roughly approximated
by neff = 3/4 ε n, thus as we decrease ε to increase the level of privacy protection, we pay
roughly linearly in effective sample size.

4.7 Matching Methods

It is often the case in observational data, that we are unable to randomize the treatment
value as we would desire in an experimental study. In such cases, matching methods provide
a mechanism by which we can extract a set of treatment and control observations, that
attempt to retain the property that other causal variables have the same distribution among
both the treated and control subgroups.

In Appendix A we prove that if a dataset, D, is constructed by matched pairs, and then
a function f with sensitivity ∆f is computed on the pair-matched data, then the sensitivity
of the entire operation (matching and computing the function) is at most 3∆f .

X - Matching Covariate Dimension

T
-

Tr
ea

tm
en

t
D
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T
=

0
T

=
1

Figure 7: Sensitivity of paired matching methods. Dashed lines represent matches that are
broken by the movement of x to some x′. Colored lines represent new matches that are
created by that movement.

We sketch out the logic of this proof in figure 7. The x axis represents some covariate
dimension on which we match observations, while the y dimension is treatment. To create
matched pairs, we attempt to find one treated and one control observation that have similar
x values. The grey lines (both solid and dashed) represent a set of possible matches in some
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dataset. To understand the sensitivity of pair matching, we want to consider how these
matches might change if some single observation is allowed to be moved in an arbitrary
fashion. Obviously in paired matches, the number of matched observations is necessarily
even. In the proof, we show that the number of observations that are matched can only
change by -2, 0, or 2 observations, and the total number of observations that change is at
most 4. As an example, in figure 7 the blue arrow represents moving one control observation
from a low to a high value of x. As it moves, its original match is broken, which causes a
knock-on effect of another match to be broken, and the new match (depicted as a red line).
However, with all this movement, so far all that has changed is one treatment and one control
observation have left the dataset. Following the blue arrow, after movement the new x is
a better match than existed in a previous pair, and thus a new match is formed. In total,
3 observations dropped out of the dataset (including the original observation that moved),
and one was added (the newly moved observation) for a net loss of two observations. The
red arrow shows an example where movement changes the dataset by 4 observations for no
net loss. The green arrow shows a movement from an unmatched location to a new location
that remains unmatched, and does not change the matched dataset at all.

In the instances where there are changes, half of these changes are occuring because we
move one observation in the dataset, and the other half are occuring because their matches
may change. However, the effect of changing one observation in the dataset is already ac-
counted for in the sensitivity of the estimator we are going to compute. Matching, potentially
doubles this effect, as the matched observations that change can also have a potential effect
on the estimator. Since the sensitivity is the upper bound on this effect, the matches that
enter or exit the dataset can themselves also effect the estimator by at most, the value of
the sensitivity. Thus in total, the largest possible effect of the movement of one observation
on a function in a matched dataset is twice the sensitivity of the function itself.

This is a powerful result because it means all no new sensitivities need to be derived for
functions as a result of pair matching in the dataset. Instead, we just adjust the sensitivi-
ties used in the mechanism appropriate for whatever function we are planning to use after
matching. For example, if we set ε to 1.5, instead of 0.5, all the simulations in 4 remain valid
if the difference of means was being calculated after matching.

4.8 Confidence Intervals from Differentially Private Releases

The differentially private difference of means test, as we saw in equation 16, has variance
both from the underlying sampling distribution of the difference of means test, and from
the Laplace noise added to preserve privacy. That means confidence intervals that are
constructed to provide coverage of the true population value, need to incorporate both sources
of error. Fortunately, the variance of the Laplace distribution from which the noise is drawn is
public information5. Unfortunately, the combination of Laplace noise and (asymptotically)
Gaussian sampling error make for a difficult distribution to integrate so as to construct

5This accords with the concept that the privacy-preserving mechanism is known and public, and explicitly
avoids “secrecy through obscurity”.
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confidence intervals. It is feasible to use Monte Carlo integration for this problem, that is,
draw simulations from a mean zero Gaussian of given variance, and a mean zero Laplace
of known variance, and numerically calculate bounds on this distribution that capture the
desired fraction of the distribution.

Algorithm 2: Numerical Confidence Interval for Difference of Means
1. for i in 1 to k do
2. Draw s ∼ fNormal(µ = 0, σ = Mse)
3. Draw n ∼ fLaplace(µ = 0, b = ∆f/ε)
4. Compute qi = |s+ n|
5. endfor
6. Compute index b = bkαc
7. Sort the results decreasing and find q(b)

8. Calculate CI1−α = Mdom ± q(b)

However, if an analytical approach is required, it is conservative to calculate the variance
of the sum of the Gaussian and the Laplace (which simply sum together linearly), and then
compute a confidence interval using this variance and the Laplace distribution The critical
value of a Laplace of variance A, is guaranteed to be larger than the critical value of some
combination of Gaussian of Variance ρA and Laplace (1− ρ)A.6 This gives us:

CI95[ȳ1 − ȳ0] = Mdom(X)± 2.996 σ (18)
σ2 = Mse(X)2 + 2(∆f/ε)2 (19)

∆f =
xmax − xmin

N1 + 1
+
xmax − xmin

N0 + 1
(20)

Where 2.996 is the critical value of the Laplace, and Mdom(X) and Mse(X) are the differen-
tially private releases of the difference of means estimator and standard error of the difference
of means.

6While this is conservative, we also saw that the differentially private standard error estimates were
attenuated.
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4.9 Replication Example: A Policy Analysis of Government Trans-
fers to Promote Women’s Health

As an example of the differentially private mechanisms for causal analysis, we replicate part
of an analysis by Lim et al. [18] on a policy assessment of India’s Janani Suraksha Yojana
(JSY), a cash transfer program designed to encourage women to participate in antenatal
care and birthing facilities. This study was replicated by Carvalho and Rokicki [19] and we
use their constructed data [20] originally from India’s District Level Household and Facility
Survey (DLHS-3) [21].

We are interested in the causal effect of the cash transfer program on women’s health
outcomes, therefore, we take the treatment variable to be receiving cash assistance from
the JSY program. As an outcome, we measure the incidence of women delivering babies
at in-facility care centers, one of the outcomes intended to be incentivised by this program.
Carvalho et al. show that structural differences in how the program was run across different
states meant that the treatment effect varies by regional government [19, 22]. Thus we have
33 different Indian states with 33 different treatment effects. These states differ in both
number of treated observations, and size of treatment effect, even though the quantities of
interest, measurement instruments, and covariates in the analysis are all the same. This
allows us to witness the effect of our differentially private mechanisms across a range of
parameter values. The data used in this analysis are public, thus allowing us to compare
the results of our methods to the sample values in the true data. However, the variables
used–individual healthcare outcomes and government cash assistance–are very much in the
style of personal data that commonly require privacy protection in social science research.

In figure 8 we show the difference of means estimates of the treatment effect of the JSY
cash transfer on the probability of delivering at an in-facility birthing center. Estimates and
confidence intervals are shown in pairs; each bottom blue line shows the sample estimate
and confidence interval directly from the private data, while on top the red version shows
the differentially private release of the estimate and its confidence interval.

The top graph orders the results by the estimated treatment effect in the private data.
We see, in these examples, generally the privacy preserving results track the results. Pubjab
and Dadra are exceptions. Andaman reverses the direction of the effect, although both
intervals include zero. Daman has largely exagerated treatment effects.

The bottom graph arranges the estimates by the sample size of the pair-matched dataset.
We see that the states in which we have fewer than 50 observations give very inaccurate
answers with confidence intervals generally beyond this scale of the x-axis; here is where our
most of our troubling examples are located, such as Daman, Dadra and Andaman. The band
of observations between 100 and 500 observations have some large added noise, but generally
give the same inference as the confidence intervals from the private data. The exception is
the Punjab result where the differentially private confidence intervals includes zero and the
version from private data does not. The differentially private interval, does however, cover
the sample estimate, and also would not include zero at 90 percent confidence. Above 500
observations the confidence intervals visually quite accurately resemble the private values.
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Figure 8: Difference of means estimates across 33 Indian states for the treatment effect
of JSY cash transfers to women on the probability of delivering at an in-facility birthing
center. Each bottom blue line shows the sample estimate and confidence interval in private
data, while the red version on top shows the differentially private release of the estimate and
confidence interval. 24



5 Private Regression

Next we consider mechanisms for releasing the coefficients of linear regressions in a differen-
tially private manner. Assume we have some dataset Z, and we want to release the estimates
of Z′Z. By means of the sweep operator, coefficients and standard errors of regressions of
any combination of variables in Z can be computed purely from the information in Z′Z [23]
[24], [25]. This allows us to estimate any regression without detracting from the privacy
budget beyond what is necessary to release Z′Z, making it valuable to mimic an interactive
setting where researchers want to analyze sensitive data that sits inaccessible behind secure
storage (see section 6).

The general method for releasing a differentially private covariance matrix is to add
Gaussian noise to each element of Z′Z, a notion originally proposed by [26] and refined by
[27]. The noise is mean 0 and has a variance proportional to the sensitivity of the element.
However, the privatized Z′Z is often too noisy to retrieve meaningful regression estimates.
This is common when there is the possibility of extreme values in Z, which is typical of social
science data where variables such as income have a heavy skew. The concept of sensitivity
is to calculate the effect the largest change in one observation can have on the function.
However, outliers can have notoriously large effects on regression estimates, and thus adding
noise proportional to sensitivity, or noise sufficient to drown out any possible outlier, will
cause problems for regression estimates.

Our approach is to first trim the data, effectively removing the extreme values and re-
ducing the noise necessary to mask a change from an observation’s true values to the new
“extremes.” Although trimming biases our estimates, least squares’ estimates are sensitive
to extreme values and thus they are often intentionally omitted, sometimes for theoretical
reasons, sometimes to improve performance, and sometimes for robustness.7 Even if we are
in the anti-trimming camp, in our application it is beneficial so long as trimming extreme
values allows us to estimate a privatized covariance matrix whose regression estimates are
closer to the truth than a non-trimmed, privatized covariance matrix.

The privacy preserving algorithm that we propose for Z′Z is given in 3. The first step
is to define a function, f(x), that calculates the distance from any observation to a defined
center of the data. For arbitrary distance metric, we trim all observations that are beyond
some ordered threshold, m. Perhaps we set m to 95% of N ; we would therefore be dropping
the most extreme 5% of our data as per f(x). Let r represent the distance from the origin
to xm, the observation at (or just prior to) m, or the one with the greatest distance after
trimming.

To trim the data in a way that is, itself, differentially private, we add noise to r using
the Gaussian Mechanism. For intuition, Figure 9 is a visual depiction of the sensitivity for

7Trimming as a preprocessing step in data exploration is common in exploratory settings, such as [28]
who trim data to improve performance of a machine learning algorithm. In Economics, for example, extreme
values of the rate of inflation are often trimmed [29]. In studying the effect of regime type on a country’s
foreign direct investment, [30] notes the effect of outliers and experiments with trimmed data. In Psychology,
trimming is used as a robust statistical method in [31, 32].
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Algorithm 3: Differentially Private Regression
1. define a function f(x) that calculates the distance from a row to the origin
2. set trimming threshold percentile m
3. calculate f(xi) for each row
4. define radius r to be f(xm) where xm is the observation at the m percentile
5. compute ∆f , the sensitivity of the radius, to be f(xm+1)− f(xm−1)
6. set r∗ to be r + ι where ι ∼ N(0, τ 2) and τ = ∆f

√
2ln(1.25/δ)ε

7. trim all observations where f(xi) > r∗

8. compute sensitivity of trimmed Z′Z for each element
9. Add noise z′jzi = z′jzi + γ, γ ∼ N(0, τ 2), τ = ∆f

√
2ln(1.25/δ)ε

trimming. xm is the point that is at (or just prior to) the threshold m. ∆f , our sensitivity,
is the distance from xm−1 to xm+1. The reason for this is that if we move any observation
from the left of xm to the right of xm, as shown in red, then r adjusts to xm+1. Likewise,
if we move any observation from the right of xm to the left of xm, as shown in blue, then r
adjusts to at most xm−1.

It is possible to move an observation anywhere, not just from one relative extreme to
the other; two depictions of this are shown in Figure 10. The orange shows a move from
the right of xm+1 to the right of xm+1. Clearly, the threshold is not affected. The green
shows a move from the left of xm−1 to a position between xm and xm+1. This redefines xm+1

to be closer to xm, resulting in a smaller ∆f . Therefore, the original ∆f remains at worst
a conservative measure of the sensitivity for trimming.8 So, regardless of the presence or
absence of any individual observation, r ranges from f(xm−1) to f(xm+1), and our sensitivity
is ∆f . The differentially private threshold for trimming is r + ι where ι ∼ N(0, τ 2) and
τ = ∆f

√
2ln(1.25/δ)ε.

∆f

xm−1 xm xm+1

Figure 9: Observations moving across the trimmed hull.

8This is not true for any distance function f . In our example, we use a unidimensional distance where
this is true.
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∆f

xm−1 xm xm+1

Figure 10: Sensitivity of the radius/range of a trimmed dataset.

Finally, we compute the sensitivity of the trimmed Z′Z and add noise to each element
z′jzi = z′jzi + γ, γ ∼ N(0, τ 2), τ = ∆f

√
2ln(1.25/δ)ε.

5.1 Monte Carlo Study

We construct Monte Carlo data generated from a joint multivariate Normal distribution as:

{Y,X} ∼ fmvn(0,Σ) (21)

Σ =


1 σ12 σ13 · · · σ1k

σ12 1 σ23 · · · σ2k

σ13 σ23 1
...

... . . .
σ1k σ2k 1

 (22)

We treat the first variable as the outcome of interest, Y , and the remaining variables as
possible explanatory factors. We set Z = {1,Y,X}, that is, the data above prepended with
a column of 1’s. For each dataset we are interested in estimates of Z′Z, from which we can
compute any regression coefficients and their standard errors. We assume the equation of
interest is:

yi = β0 + β1x1i + β2x2i + β3x3i + εi (23)

The simplest approach to constructing a differentially private version of Z′Z is to add
Gaussian noise to each unique term, with variance proportional to sensitivity, τ , as:

z′jzi = z′jzi + γ; γ ∼ N (0, τ 2) (24)

τ = ∆f
√

2 ln(1.25/δ)/ε (25)

Here, the minimum distance that could be calculated is 0 and corresponds to an obser-
vation of all 0s. The maximum distance is r∗ and can be achieved through different combi-
nations of values. In the examples that follow, we compute two versions of local sensitivity,
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where the true sensitivity is somewhere between the two.The first sensitivity is calculated
as the change in each cell’s value when the “closest” row, or that with the smallest f(x), is
recoded as the “farthest” row, or that with the largest f(x), and vice versa. This provides us
with three values for each cell in Z′Z: base value, min-to-max value, and max-to-min value.
∆f is calculated as the largest of the three values minus the smallest of the three values.

This provides an empirical, or local, sensitivity that is likely smaller than the theoretical
sensitivity. We therefore compute another sensitivity score, only this time rather than shift
an entire row, we shift variable-by-variable. Thus, each value in the row with the smallest
f(x) is recoded as the largest value observed in the data for that variable. Similarly, each
value in the row with the largest f(x) is recoded as the smallest value observed in the data
for that variable. This will produce an observation whose f(x) is so large that it would be
trimmed, and another observation whose f(x) will be at or extremely close to 0. Thus, the
sensitivity is larger than would be expected.

Note that if the data is bounded (−4, 4) (with observations beyond that range censored),
any term of the inner product Z′Z has sensitivity ∆f = 2(16), and for an entire row we have
∆f = 32

√
k.910

We first set σ12 = 0.3, σ13 = 0.15, and σ23 = 0.10 to have small correlation with both
Y and the first X, while leaving all other covariances as 0. In what follows, k is set to 10.
We simulate 100 datasets, calculating the distribution of the regression coefficients in the
sample data, the Gaussian, and the trimmed mechanisms. The distributions of the estimated
coefficients are presented in figure 11. Left to right are the results for the intercept, β0, the
coefficient on the strong relationship β1, weak relationship β2, and nonexistent relationship
β3. In the top row in blue are the density plots of the estimates from regression on the
private sample data, as the tightest spike, that varies across the simulations because of
sample variability. Overlaid are the estimates of the coefficients for the simplest private
noise in red, the trimmed private covariances with small sensitivity in green, and the trimmed
private covariances with large sensitivity in purple. For each coefficient, the green and purple
distributions are noticeably tighter to the private blue distribution.

Figure 12 explores the the standard errors resulting from these regressions. Here the green
distribution is generally shifted to the right of the blue distribution, meaning the standard
errors are larger from the trimmed private regressions than with the observed data. Given
the extra noise and reduction in information, this is reasonable. The red distribution is both
much larger and troublingly much smaller than the blue distribution. This means we have
simulations where the private regressions convey less uncertainty in the estimated effect than
is possible with the observed data.

The bottom row in figure 12 shows the t-test generated from these standard errors. In
this model, t-test of magnitude greater than 1.96 reject the null hypothesis of no relationship
between x and y at 95 percent confidence. These critical values are drawn as orange lines.
The t-test of regressions from the observed data, are plotted against the simple private

9Note the peculiarity that zero centering the range of the data to (−a, a) as opposed to bounding (0, 2a)
reduces the sensitivity from 4a2

√
k to 2a2

√
k.

10For k variables, Z′Z has (k + 2)(k + 1)/2 unique terms.
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Figure 11: Estimated coefficients, from private data (blue), trimmed DP statistics with small
sensitivity (green), trimmed DP statistics with large sensitivity (purple), and pure differen-
tially private statistics (red).
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Figure 12: Estimated standard errors, from private data (blue), trimmed DP statistics with
small sensitivity (green), trimmed DP statistics with large sensitivity (purple), and pure
differentially private statistics (red).
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regressions (red), those from the trimmed data with small sensitivity (green), and those
from the trimmed data with large sensitivity (purple). Recall, β0 and β3 both in truth zero,
and most of the green simulations fall in the narrow band that correctly fails to reject the
null, while the red simulations spread beyond the critical values in both directions. Similarly,
β1 and β2 are not in truth zero, and while all the simulations reach the correct conclusion
for the large effect of β1, some of the red observations give the wrong answer for weaker true
effect of β2.

Finally, figure 13 shows the Mean Squared Error (MSE) between the observed coefficients
and the private versions, as the covariance σ12 moves across the range (−0.95, 0.95). For the
simple private regressions, the errors are highest when the magnitude of the covariance is
greatest. The MSE of the trimmed coefficients might have the same shape, but at this scale
they are so much smaller that it is difficult to tell. The ratio of the MSE’s between the
two estimators, presented in the right graph, shows that the simple private regression has
between 50 and 70 times more MSE than the trimmed version.
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Figure 13: The left graph show mean squared error of private released statistics for pure
private statistics (red), and trimmed private statistics (blue), across various strengths of the
relationship. The right graph shows the ratio of these two errors.
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6 A Curator Architecture for Private Data
Analysis

Differential privacy gives us mechanisms by which we can release useful statistical estimates
in datasets, with guarantees that they can not be combined to violate individual privacy.
This .

A curator model provides an architecture for learning from private data, without access
to the raw underlying dataset [13, 5]. The curator acts as an intermediary between data
users and private datasets. The data resides in secure storage and is never available to the
user. Users submit queries, or perhaps statistical models, to the curator; the curator in
turn responds with query answers, or model estimates. In the case of differential privacy,
these responses are not exact answers from the data, but differentially private versions of
any query or model estimate.

Private
Data Curator

PUser

PUser

PUser

q1

p1

q2

p2

p3

q3

Figure 14: The curator architecture for data privacy.

In an interactive setting, the curator has access to the private data and can compute
differentially private answers to submitted queries. The data has a privacy budget, ε, governed
by the same expressions we saw previously in section 2.1. This ε sets the privacy of the
dataset, and as in equation 1 determines the upper bound of the probability difference of
any reported result between neighboring datasets. Each query, qi, to the dataset has its own
precision εi, that determines how much precision, and thus privacy leakage, is permitted for
that query. The combination of all εi can not exceed the total ε of the dataset. When the total
queries reach ε, the privacy budget of the dataset has been exhausted, and no more queries
can be answered. If more queries were answered, then some combination of queries might
leak information with probability greater than the risk guarantee of differential privacy. A
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capable curator should record previous questions and answers that have been provided; if
the same question arises the curator can provide the exact same answer without touching
the private data, or expending any further ε. 11

In an noninteractive setting, the entire privacy budget is immediately exhausted by a
set of questions that are anticipated to be of most use to future users. The dataset is then
closed to all future access. The questions might include a variety of summary statistics or
measures of relationships in the data. If they include the sufficient statistics for a class of
statistical model, then all statistical models in that class can be answered, mimicking an
interactive setting, even though no new queries are calculated, and all answers are the result
of past computation. For example, if for a set of variables, the covariance matrix, vector of
means, and sample size have been provided, then any possible linear regression among those
variables can be calculated from those sufficient statistics.

6.1 The Depositor Interface

For a curator interface to work, the responsible owner (depositor) of the data must first
add the dataset to the curator, and set a global value of ε to determine the privacy level
of the data. At this point, the depositor might decide to spend some of the privacy budget
on statistical answers that the owner anticipates will be of use to future users, and how to
parition levels of precision, or εi, to those answers. If the entire budget is spent on releasing
differentially private statistics, then the dataset is closed, and the curator is noninteractive.
Or, some portion of ε may be reserved for future interactive queries of users that are unantic-
ipated. For example, in a large dataset, a depositor might choose to use the entire budget to
release summary statistics for most variables, and a precise version of the covariance matrix
of a subset. Or, if they can not anticipate which variables (or interactions) to include in the
covariance matrix, they might let any future regression be run, and a Laplace or Gaussian
mechanism operating on just those requested coefficients will slowly exhaust the privacy
budget by future users until the data set has to be closed.

In our tool, we provide an interface for the depositor, as shown in figure 15. The data
depositor, first sets a global ε, which may be informed by an interactive interview process.
The user then builds up a list of statistics to be released for each variable in the dataset,
and can partition the privacy budget between these statistics. For any given εi given to a
particular released statistic, the interface calculates a projected level of accuracy to guide
the user in making relative tradeoffs in the privacy budget.

When the data depositor has distributed their privacy budget among the statistics they
wish to release, the second portion of our tool system draws differentially private versions
of those statistical summaries selected by the data depositor from a library of differentially

11Similarly, there are circumstances in which certain combinations of questions have less mutual infor-
mation, and thus their associated ε’s add up in a more forgiving and less than linear fashion, permitting
more questions to the dataset before exhausting the privacy budget. The theoretical results on composi-
tion theorems that calculate the effect of combinations of queries on the total privacy budget is an active
literature.
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Figure 15: Example screen from the interactive privacy budget allocation tool for data depos-
itors.

private routines (which we created in the R statistical language, and also make available for
use by the R community) and stores them in metadata associated with that file on Dataverse.
Future researchers who wish to explore restricted social science data can then access these
privacy-preserving summary statistics either from the metadata, or through the TwoRavens
graphical data exploration tool built for Dataverse, which we have adapted for differentially
private statistics, which we describe in the next section.

6.2 The Query Interface

At the other end, users who want to see summary statistics, make queries, or run statistical
models on the private data, must work through the curator interface, without access to
the raw data. We provide an interface using a branch of the TwoRavens project [33], a thin
client, gesture driven, browser based interface for statistical analysis. The architecture of the
TwoRavens interface is shown in figure 17. The data remains on a secure server, archived on
an instance of Dataverse [34] [35], a repository for social science data. Meta data is available
to the TwoRavens interface, which includes any released differentially private statistics, such
as means or density plots. Regressions can be constructed by means of directed graph, and
sent to run on a remote server, using R libraries such as Zelig. Importantly, the data itself is
never available on the client side, creating a secure architecture for a curator. An example of
the user interface for exploring summary statistics and building a model using Census data
is shown in figure 16.
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Figure 16: Example screen from the TwoRavens statistical interface used here as a query
interface for exploring differentially private summary statistics and private statistical models.
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Figure 17: Privacy architecture for secure curator interfaces.
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7 Conclusion

Social scientists often analyze data that contains information that, for legal, moral, or pro-
fessional reasons, must guarantee privacy to the research subjects. In tension with this, there
are strong scientific motivations to share and distribute data openly.

Differential privacy is one mathematical conception of privacy preservation that allows re-
searchers to release statistical estimates from their dataset with the strong guarantee that no
individual’s privacy can be comprised, regardless of the combination of queries or estimates
computed, and regardless of any auxiliary information that can be combined.

We have introduced differential privacy and basic methods for computing privatized sum-
mary statistics. We have derived new results to implement differentially private mechanisms
to release causal estimates, and estimates after pairwise matching, as well as a new algo-
rithm for computing a privatized covariance matrix and, therefore, any linear regression from
a dataset. These methods enable researchers to compute the results of inferential models in
restricted data without any access to the underlying data.

We make these methods available to researchers through a system of privacy preserving
tools that implement these methods, as well as many methods for simpler summary statistics.
These tools, together with interfaces we have developed for distributing the privacy budget
and exploring differentially private statistics, in combination with a secure data repository
such as the Dataverse Network, together form a curator architecture for data analysis. This
architecture allows potential researchers to explore data and calculate statistical estimates,
without any access to the underlying raw data, and while provably protecting the privacy of
individual-level information.

While ostensibly these methods prevent researchers from accessing data, our goal is to in-
crease the ease with which researchers can gain access to results in restricted access datasets,
and increase the facility of researchers to search across restricted sources to identify the ideal
studies for their research. The increasing ability of big data collections, sensor data, and
social media data to measure individual behavior in nuance, ensures that such privacy con-
cerns will only increase. With this increase in the invasiveness and pervasiveness of data
collection methods, and the centrality of such data to modern social science, comes a new
need for methodological work on privacy-preservation in quantitative research, so that sub-
jects continue to trust social scientists with their personal information. The strong privacy
guarantees of differential privacy provide an important tool in the development of rigorous
privacy-preservation in quantitative social science.
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A Proofs

A.1 Notation

Assume every observation i of a random variable Y is observed to have outcome yi, within
bounds ymin ≤ yi ≤ ymax after treatment condition ti ∈ {0, 1}. To compute sensitivity of the
difference of means test, we wish to determine the largest effect that arbitrarily changing
one observation, say the j-th observation, can have on this estimate. Note, we can change
one observation by changing both its outcome and its treatment.

Consider the following partial sums over the dataset, ignoring any information in the j-th
observation:

n1 =
∑
i 6=j

ti ȳ1 =

∑
i 6=j tiyi

n1

n0 =
∑
i 6=j

(1− ti) ȳ0 =

∑
i 6=j(1− ti)yi

n0

(26)

From this, the difference of means estimate, when the j-th observation is treated can be
written as:

ȳ1−0(yj|tj = 1) =
yj(1) +

∑
i 6=j tiyi

n1 + 1
−
∑

i 6=j(1− ti)yi
n0

(27)
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And similarly when the j-th observation is control:

ȳ1−0(yj|tj = 0) =

∑
i 6=j tiyi

n1

−
yj(0) +

∑
i 6=j(1− ti)yi

n0 + 1
(28)

A.2 Sensitivity of the difference of means estimator

Theorem A.1 The sensitivity of the difference of means estimator, ȳ1−0, among n1 and n0

treatment and control observations:

∆ȳ1−0 =
ymax − ymin

n1 + 1
+
ymax − ymin

n0 + 1
(29)

Proof If the j-th observation remains treated, following equation 3, its largest effect on the
difference of means estimate is:

C = max
yj ,y′j

ȳ1−0(yj, tj = 1)− ȳ1−0(y′j, t
′
j = 1) = max

yj ,y′j

yj − y′j
n1 + 1

=
ymax − ymin

n1 + 1
(30)

Similarly, if it remains untreated, its largest effect is:

D =
ymax − ymin

n0 + 1
(31)

If the j-th observation moves from treatment to control, differencing equations 27 and 28
can be reduced to:

A−B =
yj(1)

n1 + 1
+

yj(0)

n0 + 1
+

[n1 − (n1 + 1)]
∑

i 6=j tiyi

n1(n1 + 1)
−

[(n0 + 1)− n0]
∑

i 6=j(1− ti)yi
n0(n0 + 1)

(32)

=
yj(1)

n1 + 1
+

yj(0)

n0 + 1
+
−n1ȳ1

n1(n1 + 1)
+
−n0ȳ0

n0(n0 + 1)
(33)

=
yj(1)− ȳ1

n1 + 1
+
yj(0)− ȳ0

n0 + 1
(34)

Sensitivity of the difference of means test is then:

∆ȳ1−0 = max
yj(1), yj(0)

{|A−B|, C,D} (35)

Examining |A−B|, the left and right terms of equation 34 have upper bounds:

max
yj(1),ȳ1

∣∣∣∣∣yj(1)− ȳ1

n1 + 1

∣∣∣∣∣ =
ymax − ymin

n1 + 1
= C (36)

max
yj(0),ȳ0

∣∣∣∣∣yj(0)− ȳ0

n0 + 1

∣∣∣∣∣ =
ymax − ymin

n0 + 1
= D (37)

Therefore the sharp bound on the sensitivity is:

∆ȳ1−0 ≤ C +D � (38)
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A.3 Sensitivity of the variance and standard errors

Given sample mean and standard errors:

ȳ =

∑
i yi
n

; s =

∑
i(yi − ȳ)2

n
, (39)

the Laguerre-Samuelson inequality gives absolute bounds on the location of any sample
observation as:

ȳ − s
√
n− 1 ≤ yj ≤ ȳ + s

√
n− 1 (40)

with equality only in the limiting case where all observations but j are identical. We first
rewrite this in terms of s as:

s ≥ |ȳ − yj|√
n− 1

=

∣∣∣ (n−1)ȳ−j+yj
n

− yj
∣∣∣

√
n− 1

=

√
n− 1

n

∣∣∣ȳ−j − yj∣∣∣, ∀yj (41)

where ȳj is the mean of all but the jth observation. We might intuitively reason that the
maximum effect one observation can have on s is when all the observations are at one bound,
and then one observation is moved to the opposite bound. In this case, s goes from zero
to the maximum of equation A.3 under equality, and the sensitivity is

√
n− 1/n times the

range of the data.

We now formally prove this intuitive justification.

Theorem A.2 The sensitivity of the sample estimated variance of N observations is:

∆s2 =
n− 1

n2

(
ymax − ymin

)2

(42)
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Proof We can rewrite the sample variance as:

s2 =
1

n

∑
i

(ȳ − yi)2 (43)

= ȳ2 − 2ȳ
1

n

∑
i

yi −
1

n

∑
i

y2
i (44)

=

(
1

n

∑
i

y2
i

)
− ȳ2 (45)

=
1

n

∑
i

y2
i −

(
1

n

∑
i

yi

)2

(46)

=
1

n

[
y2
j +

∑
i 6=j

y2
i

]
− 1

n2

(
yj +

∑
i 6=j

yi

)2

(47)

=
1

n

[
y2
j +

∑
i 6=j

y2
i

]
− 1

n2

(
y2
j + 2yj

∑
i 6=j

yi +
(∑

i 6=j

yi

)2
)

(48)

=
1

n

[∑
i 6=j

y2
i −

1

n

(∑
i 6=j

yi

)2
]

+
1

n2

(
(n− 1)y2

j − 2yj
∑
i 6=j

yi

)
(49)

=

[
1

n

∑
i 6=j

y2
i −

( 1

n

∑
i 6=j

yi

)2
]

+
n− 1

n2

(
y2
j − 2yj ȳ−j

)
(50)

where ȳ−j is the mean after removing the jth observation:

ȳ−j =
1

n− 1

∑
i 6=j

yi (51)

The first term is not a function of yj (and resembles the variance of the dataset after omitting
jth observation, except for the incorrect scaling by n). This gives us partials with respect
to the jth observation of:

δs2

δyj
=

2(n− 1)

n2

(
yj − ȳ−j

)
(52)

δ2s2

δy2
j

=
2(n− 1)

n2
> 0 (53)

Therefore:

arg min
yj

s2 = ȳ−j (54)

arg max
yj

s2 =

{
ymin, if |ymin − ȳ−j| ≥ |ymax − ȳ−j|
ymax, if |ymin − ȳ−j| < |ymax − ȳ−j|

(55)

41



Thus across all possible values of yj, the variance is minimized when yj is at the mean of the
rest of the data, and the variance is maximized when yj is at the bound farthest from the
mean.

This gives us the difference in the variance from changing the j-th observation from yj
to y′j as:

s2(yj)− s2(y′j) =
n− 1

n2

(
y2
j − y′2j − 2(yj − y′j)ȳ−j

)
(56)

And thus sensitivity of the variance as:

∆s2 = max
yj ,y′j

[
s2(yj)− s2(y′j)

]
= max

yj ,ȳ−j

n− 1

n2

(
y2
j − ȳ2

−j − 2(yj − ȳ−j)ȳ−j
)

(57)

= max
yj ,ȳ−j

n− 1

n2

(
y2
j + ȳ2

−j − 2yj ȳ−j

)
(58)

= max
yj ,ȳ−j

n− 1

n2

(
yj − ȳ−j

)2

(59)

=
n− 1

n2

(
ymax − ymin

)2

. � (60)

It is not generally the case that ∆
√
f =
√

∆f for the same reasons that it is not generally
true that

√
a2 − b2 = a−b. Thus sensitivity of the standard deviation need not follow directly

as the square-root of the sensitivity of the variance. However, in this special case it does:

Lemma A.3 The sensitivity of the sample standard deviation, s, is:

∆s =

√
n− 1

n

(
ymax − ymin

)
(61)

Proof Since s ≥ 0, ∀Y then equations 54 and 55 also hold for s. As minYj ,Y−j [s] = 0 then

∆s2 = maxyj ,y′j

[
s2(yj)− s2(y′j)

]
= max

[
s2(yj)− 0

]
⇒ ∆s = max

[
s(yj)− 0

]
=
√

∆s2.

Lemma A.4 The sensitivity of the standard error of the mean, s is:

∆s =

√
n− 1

n3

(
ymax − ymin

)
(62)

Proof The standard error of the mean, se = s/
√
n is simply postprocessing of s by a known

constant, and ∆c f(x) = c∆f(x) for constant c.

Lemma A.5 The sensitivity of the standard error, s1−0, of the difference of means test
among n1 and n0 treatment and control observations is:

∆s1−0 =

√
N∗ − 1

N∗3

(
ymax − ymin

)
, where N∗ = min (n0, n1) (63)
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Proof If we consider worst-case movement of some observation xj to x′j, there are three
possible cases for treatment, each of which have their own sensitivity, (1)∆f1 : tj = t′j =
1; (2)∆f2 : tj = t′j = 0; (3)∆f3 : tj = 1−t′j. Lemma A.4, gives ∆f1 and ∆f2, after adjusting n
to n1 or n0, respectively. Let s(xi) and s(xi, xj) be the standard error of observations with
treatment i, with and without xj in that group. ∆f3 = maxxj ,i[(s

2(xi, xj) + s2(x∼i))
1/2 −

minxj(s
2(xi) + s2(x∼i, xj))

1/2] = maxxj ,i(s
2(xi, xj) + s2(x∼i))

1/2 − 0 = max(∆f1,∆f2). So
max(∆f1,∆f2,∆f3) = max(∆f1,∆f2) where ∆f1 > ∆f2 ⇐⇒ n1 < n0.

Theorem A.6 If a dataset, D, is constructed by matched pairs, and then a function f
with sensitivity ∆f is computed on the pair-matched data, then the sensitivity of the entire
operation (matching and computing the function) is at most 3∆f .

Proof We set out a proof by exhaustion. After paired matching, define n0(X) (and n1(X))
as the number of control (treatment) observations with a matched treatment (control) ob-
servation in dataset (X), and n(X) = n1(X) + n0(X)(= 2n1(X) = 2n0(X)). Consider one
observation xj = (yj, tj) that can be manipulated to x′j = (y′j, t

′
j). xj is either initially

matched or unmatched, in which case n(X−j) ∈ {n(X), n(X)− 2}. x′j is either matchable or
unmatchable. If matchable it either replaces an observation in an existing match, or forms a
match with a previously unmatched observation. thus n(X, x′j) ∈ {n(X), n(X) + 2}, there-
fore n(X−j, x

′
j) ∈ {n(X)−2, n(X), n(X)+2}. In summary, the exhaustive set of possibilities

is:
xj x′j

matched unmatched new match replacement unmatched
observations added 0 0 2 1 0
observations removed 2 0 0 1 0

Any manipulation of xj to x′j must result in one left column outcome and one right col-
umn outcome. Global sensitivity upper bounds the effect of arbitrarily manipulating one
observation, which is removing one observation and replacing it with another. Two observa-
tions removed and two added is the same as manipulating two observations in the dataset,
and thus has worst case effect of twice the sensitivity. Three observations removed and one
added is less change to the data than manipulating three observations, and thus has an effect
bounded by three times the sensitivity of the final function.
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B Algorithm for Differentially Private Standard Errors
Following closely Smith [17], but in context of standard errors, the algorithm is:

Algorithm 4: Differentially Private Standard Errors of Difference of Mean Estimates
1. Divide the dataset into M subsets, X1, . . . , XM .
2. for i in 1:M Calculate si =

√
sd(x1)2

n1
+ sd(x0)

n0

3. â← PrivateQuantile(S, 1
4 ,

ε
4 ,Λ)

4. b̂← PrivateQuantile(S, 3
4 ,

ε
4 ,Λ)

5. µ̂ = (â+ b̂)/2
6. ˆiqr = |â− b̂|
7. u = µ̂+ 2 ˆiqr
8. l = µ̂− 2 ˆiqr

9. Define Π[l,u] =


l if x < l
x if l ≤ x ≤ u
u if x > u

10. Calculate w = 1
MΣM

i=1Π[l,u](Xi)

11. Draw Y ∼ fLaplace(µ = 0, b = |u−l|
2εk )

12. Release M(X) = w + Y

Algorithm 5: PrivateQuantile(Z, α, ε)
1. Sort Z ascending
2. Replace Zi < 0 with 0, and Zi > Λ with Λ.
3. Define Z0 = 0 and Zk+1 = Λ
4. For i in 1:k set yi = (Zi+1 − Zi)exp(−ε|i− αk|)
5. Sample an integer i ∈ {0, · · · , k} with probability yi/Σk

i=0yi
6. Output a uniform draw Zi+1 − Zi.
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