
Interpreting Zelig:
Everyone’s Statistical Software

Christine Choirat, Vito D’Orazio,
James Honaker, Muhammed Y. Idris, Jennifer McGrath

August 9, 2016

Abstract

The Zelig library facilities the interpretation of regression models and creates a com-
mon call structure for estimating a large number of statistical models in R. Quantities
of interest, such as the expected value or the change in expected value, are simulated
and visualized. R libraries for estimating statistical models are wrapped and interacted
with through a common syntax. We introduce a new version of Zelig that has been
written using R’s Reference Classes. This simplifies the contribution of new models
and diagnostics, new libraries, and new quantities of interest to Zelig. It improves
replication by incorporating all necessary arguments into a single object that may then
be exported. This new version of Zelig makes the generalized information matrix test
available for all appropriate models, and it integrates with R libraries for multiple im-
putation, counterfactual analysis, and causal inference. Additional features include a
help method, improved scalability through integration with dplyr, stochastic unit tests
to ensure the reliability of included models, and the automatic creation of model-level
metadata to facilitate integration with visualization tools, graphical user interfaces, and
citations for contributors, among other features.
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1 Introduction and history
The R statistical language is a giant open source project that spans all domains of applied
statistics, visualization, and data mining. At the time of writing, R contains 7078 different
code packages, most of which are written by a unique author. Among the advantages of this
decentralized, dispersed organization, are the speed and depth of coverage across statistical
domains with which researchers share software and tools they have developed. A drawback
of this massive contribution base is that each contributed R package can often have its own
definitions for how data should be structured, divided, accessed, how formulas should be
expressed, and arguments named. As a result, every researcher has to learn each package’s
calls and notation, and possibly restructure their data, before seeing if that package has any
useful application to their quantitative project.

The Zelig package for R brings together an abundance of common statistical models found
across packages into a unified interface, and provides a common architecture for estimation
and interpretation, as well as bridging functions to absorb increasingly more models into the
collective library (Imai et al., 2008). Zelig allows each individual package, for each statis-
tical model, to be accessed by a common, uniformly structured call and set of arguments.
Researchers using Zelig with their data only have to learn one notation to have access to
all enveloped models. Moreover, Zelig automates all the surrounding building blocks of a
statistical workflow–procedures and algorithms that may be essential to one user’s applica-
tion but which the original package developer perhaps did not use in their own research and
thus might not themselves support. These include statistical utilities such as bootstrapping,
jackknifing, matching and reweighting of data. In particular, Zelig automatically generates
predicted and simulated quantities of interest (such as relative risk ratios, average treatment
effects, first differences and predicted and expected values) to interpret and visualize complex
models.

It also interfaces seamlessly with packages for preprocessing of data, such as matching
algorithms for balanced sample selection, and multiple imputation algorithms for treatment
of missing data, and with packages for postprocessing of model results, such as for forecasting
and counterfactual inference.1 Researchers who write a statistical estimator in a new package,
and include the three simple bridge functions, can add all of these abilities to the new
estimator they have published, without duplication of effort.

1.1 History of the Zelig Project

Imai et al. (2008) describe theoretically a Zelig library with five desirable features: (1) a
common call structure for estimating a model and defining and simulating quantities of
interest; (2) a generalization of the R formula syntax for representing statistical models; (3)
a toolkit for developers to add new R libraries to Zelig; (4) a replication object for users to

1Many of these widely used packages, such as MatchIt and CEM (for matching), Amelia (multiple im-
putation), WhatIf (model dependence in counterfactuals), and YourCast (forecasting), are also R packages
developed by authors at Harvard IQSS.
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easily replicate an analysis; and (5) the model-level metadata necessary to facilitate Zelig’s
integration with a graphical user interface. While previous versions of Zelig had included
these features, developers were limited by the capabilities of R. As a result, the project faced
several challenges from both the user’s and the developer’s perspective.

In the underlying Zelig 3 code every model could have a very different architecture,
meaning new maintainers had to learn all the work of everyone who had contributed to the
codebase before, and new features had to be added one-by-one to old models. As a result,
coverage across models was often incomplete and developers had difficulty contributing new
models. Zelig 4 attempted to fix some serious issues in the Zelig 3 series by moving to a
modular and object-oriented architecture for Zelig objects. The overarching goal was to
make the package easier to maintain as it grew in scope, and to allow contributors to add
new models without excessive Zelig expertise. We also wanted to add new capabilities and
features to Zelig without having to do so piecemeal across the different models. An object-
oriented design, sought to allow more structure to building models, also means contributors
adding new models have to do less work, as much is generalized by the architecture. It
simplifies the maintainers job by making the moving pieces more uniform.

However, when Zelig 4 was developed, the only option for an object oriented approach
was by using S4 classes in R. S4 classes were an preliminary attempt for a new, more object-
oriented class in R. The inherent problems in S4, particularly with regard to environments
and scoping, manifested in Zelig. For example, it was very difficult for users to put Zelig
calls inside of new functions. There were lots of code readability issues as Zelig in S4 relied
heavily on environments. The new “Reference classes” (RCs) now in R have fixed these
issues. The syntax for using RCs has conventions resembling Python and looks much more
object oriented than traditional R code which has been more strongly rooted in functional
programming. Under the hood, Zelig code relies heavily on these, and also on dplyr, which
has its own unique syntax. Users who come to R from Python, or other object-oriented
languages can use the Zelig objects in an object oriented fashion.

However, again we set out with the task that Zelig 5 Choirat et al. (2015) retain or
improve the ease of use of past Zelig versions, and so users who come to Zelig with only a
background in R should hopefully continue to find that Zelig is approachable, user-friendly,
and accessible through a simple framework of functions. Indeed, although internally the
architecture is entirely new, we worked to retain all of the user-level syntax of previous
versions. All of the previous commands–zelig(), setx() and sim()–behave in the same fashion,
even though there are alternate ways in the new architecture for users to get to these results
using more object oriented syntax. Similarly, interpretability of statistical models through
graphs, and through quantities of interest such as first differences, is still at the heart of the
Zelig architecture.

In section 2 we describe the new Zelig architecture and the ways in which it is used to
accomplish a software implementation of the theoretical framework described in Imai et al.
(2008). Section 3 introduces new features, including automatically generated citations and
help, scalability resulting from integration with dplyr, and stochastic unit tests. We de-
tail an example model implementation and demonstrate how developers can contribute their
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statistical models to Zelig in section 4. The Zelig API contains the model-level metadata nec-
essary for a graphical user-interface and other integrations, and examples uses are included
in section 5.

2 Architectural changes

The fundamental motivation behind the architectural design of Zelig 5 Choirat et al. (2015)
is to take advantage of how statistical models are nested, how different statistical families are
related, and how we often pass the same arguments and call the same functions for different
models. The general idea is that features should only be implemented in the code once, and
if more than one statistical model shares a feature, then that feature is inherited by instances
of those models. At the top level of the inheritance are the features that are identical across
models, including fields such as data and formula. At the bottom level of the inheritance
are the features that are unique to that statistical model, such as its link function.

2.1 From S4 classes to reference classes (RC)

Packages such as sp (see Pebesma and Bivand (2005); Bivand et al. (2013)) and large projects
such as Bioconductor (www.bioconductor.org) rely heavily on S4 classes. Zelig 5 switched
to reference classes (RC) that are now built-in in R. RC are written using S4 classes, so
any RC implementation could theoretically be rewritten using S4 classes only. However, as
(Wickham, 2014, Chapter 7) points out:

RC objects are also mutable: they don’t use R’s usual copy-on-modify semantics,
but are modified in place. This makes them harder to reason about, but allows
them to solve problems that are difficult to solve with S3 or S4.

As an illustration, consider a toy Zelig implementation of a least squares model, in which
the user provides a formula and dataset name. The simplest S4 version can be written as:

> zelig_S4 <- setClass( "zeligS4",
slots = c(formula = "formula", data = "data.frame"))

> setGeneric("zelig", function(object) {standardGeneric("zelig")})
> setMethod("zelig",signature(object = "zeligS4"),

function(object) lm(formula = object@formula, data = object@data))

> z <- zelig_S4(formula = unem ~ gdp + capmob + trade, data = macro)
> zelig(z)

On the other hand, a minimal RC implementation is:
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> zelig_RC <- setRefClass("zeligRC",
fields = c(formula = "formula", data = "data.frame"),
methods = list(zelig = function()

lm(formula = .self$formula,data = .self$data)))

> z <- zelig_RC$new(formula = unem ~ gdp + capmob + trade, data = macro)
> z$zelig()

Although derived from S4 classes, both the syntax and the scoping and inheritance rules
of the new RC are much closer to the type of object-oriented (OO) paradigm available in
languages such as Python or Ruby. Both RC and S4 enforce type safety : for example a
check is performed at runtime to make sure that the arguments of the zelig method are of
type formula and data.frame. Zelig 4 was implemented with S4, but the implementation
was only partial: environments and hidden global variables were used, making the codebase
quite unstable.

RC are not “better” than S4 classes but they provide a standard OO paradigm, whilst
S4 classes are an idiosyncratic R implementation. In our opinion, RC are more intuitive
and make Zelig code easier to write, maintain, debug and extend. Also, using RC makes it
trivial to switch to other OO implementations within R, for example if a future version of
Zelig were to rely on R6 classes (Chang, 2015). Thanks to the design similarity of RC with
other OO implementations, Zelig could be ported to other languages (Crosas et al., 2015).
A Python version in particular would be easy to achieve.

2.2 The new Zelig object

A typical use of Zelig consists in specifying and estimating a statistical model, setting co-
variates to values of interest and running simulations:

> data(macro)
> z.out <- zelig(unem ~ gdp + capmob + trade, data = macro, model = "ls")
> x.out <- setx(z.out)
> s.out <- sim(z.out, x.out)

Conceptually, there is a single, unique Zelig object z.out created in the previous code
snippet. This object is created by a call to the zelig function and modified, not recreated,
by calls to setx and sim. Somewhat unintuitively, the use of the assignment operator for
setx() and sim() does not create a new object or overwrite an existing one. They are instead
being used to populate a portion of the existing object z.out. This use of the assignment
operator has been implemented in Zelig 5 for the purposes of backwards compatibility. Below
is an example use of Zelig using the more current syntax of RC.

In Zelig 5, the Zelig object is initialized and then incrementally populated. The three core
functions of the Zelig methodology are implemented as methods, to use OO parlance, and,
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just like in previous versions of Zelig, are expected to be called sequentially. For example,
to create a least squares model, we first initialize a Zelig object, z.out <- zls$new(), and
then call the zelig, setx and sim methods:

> data(macro)
> z.out$zelig(unem ~ gdp + capmob + trade, data = macro)
> z.out$setx()
> z.out$sim()

This generates three lists inside the Zelig object: z.out$zelig.out, z.out$setx.out
and z.out$sim.out. Unlike previous versions of Zelig, where z.out was copied and included
into x.out which in turn was copied and included into s.out, there exists only one version
of the object, saving memory without sacrificing computational efficiency. Furthermore, it is
straightforward to keep track of the stage of construction and it therefore enables methods
to have different behaviors at different stages and to provide users with information on what
method should be run next:

> z.out <- zls$new()
> print(z.out)
Next step: Use ’zelig’ method

Right after the object is created, the user is told to use the zelig method:

> z.out$zelig(unem ~ gdp + capmob + trade, data = macro)
> print(z.out)
Model:

Call:
stats::lm(formula = unem ~ gdp + capmob + trade, data = as.data.frame(.))

Residuals:
Min 1Q Median 3Q Max

-5.3008 -2.0768 -0.3187 1.9789 7.7715

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.181294 0.450572 13.719 < 2e-16
gdp -0.323601 0.062820 -5.151 4.36e-07
capmob 1.421939 0.166443 8.543 4.22e-16
trade 0.019854 0.005606 3.542 0.000452

Residual standard error: 2.746 on 346 degrees of freedom
Multiple R-squared: 0.2878,Adjusted R-squared: 0.2817
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F-statistic: 46.61 on 3 and 346 DF, p-value: < 2.2e-16

Next step: Use ’setx’ method

Method setx is run:

> z.out$setx()
> print(z.out)
setx:

(Intercept) gdp capmob trade
1 1 3.254 -0.8914 57.08

Next step: Use ’sim’ method

and finally simulations are performed using the sim method:

> set.seed(1234)
> z.out$sim()
> print(z.out)

sim x :
-----

ev
mean sd 50% 2.5% 97.5%

1 4.990045 0.1458181 4.992802 4.714031 5.275271
pv

mean sd 50% 2.5% 97.5%
1 4.990045 0.1458181 4.992802 4.714031 5.275271

2.3 Compatibility wrappers

To maintain backward compatibility and thus ensure that Zelig 4 code still runs in Zelig 5,
we provide a set of wrappers that mimic the syntax of Zelig 4. These wrappers are generated
from a JSON file in the Zelig R package automatically created when the package is built.
Indeed, every model available is Zelig 5 has a wrapper field which gets populated upon object
initialization:

> z.out <- zls$new()
> print(z.out$wrapper)
[1] "ls"

So when Zelig 5 is used as:
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Zelig!

1.!
callSuper()!

2.!
callSuper()!

3.!
callSuper()!

4.!
Assign fields!

5.!
Assign fields!

6.!
Assign fields!

7.!
Assign fields!

Zelig-!
glm!

Zelig-!
binchoice!

Zelig-!
logit!

Figure 1: Inheritance and statistical models.

> z.out <- zelig(unem ~ gdp + capmob + trade, data = macro, model = "ls")

the model wrapper argument allows the zelig call to be unambiguously translated to
creating and estimating a zls object. The JSON file also contains a description of the model,
the vignette URL and information about class hierarchy (see Section 5).

2.4 Inheritance structure

Reference classes allows Zelig to take advantage of how different statistical families are re-
lated. For example, in the setting of Generalized Linear Models (GLM), binomial data is
often modeled with a logit or a probit. These two models only differ by their link functions,
respectively ln(p/(1−p)) and Φ−1(p), where p is the parameter of the Bernoulli distribution.

The Zelig implementation takes advantage of how these statistical models are naturally
nested, as shown in figure 1. We define a Zelig-glm class that derives from the main Zelig
object via a single inheritance mechanism:

zglm <- setRefClass("Zelig-glm",
contains = "Zelig",
fields = list(family = "character",

link = "character",
linkinv = "function"))

We then define a Zelig-binchoice class, where we specify that the family field is
“binomial” and calculate the quantities of interest in a virtual way, that is without the need
to define a link function:
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zbinchoice <- setRefClass("Zelig-binchoice",
contains = "Zelig-glm")

At this point, we only need to specify the link functions (“logit” and “probit”) to implement
the full logit and probit models.

zlogit <- setRefClass("Zelig-logit",
contains = "Zelig-binchoice")

zlogit$methods(
initialize = function() {

callSuper()
.self$link <- "logit"
[...]

}
)

Models such as “logit GEE” or “logit Bayes” rely on multiple inheritance:

zlogitbayes <- setRefClass("Zelig-logit-bayes",
contains = c("Zelig-bayes",

"Zelig-logit"))

Estimation and simulations are performed using Zelig-bayes, whilst quantities of in-
terest are taken from Zelig-logit. Multiple inheritance avoids duplicating code and is
therefore a less error-prone software development strategy.

Objects, user-defined or belonging to other R packages, can be derived from main Zelig
class. The ZeligChoice package (https://github.com/IQSS/ZeligChoice) is an illustration
of this inter-package inheritance.

2.5 Quantities of interest

Quantities of interest available across all statistical models in Zelig include predicted values,
expected values, and first differences. These are calculated using the algorithm described
in King et al. (2000). Algorithm 1 describes simulating predicted values, and algorithm 2
describes simulating expected values. First differences are estimated as the difference in two
expected values, simulated at different chosen values of the independent variables.

Steps 1, 2, and 3 are identical across statistical models, and are therefore handled at
the top level of inheritance. With respect to steps 1 and 2, model estimates are always
placed in the same location inside the Zelig object, so they are consistently retrievable.
Once retrieved, it is straightforward to simulate the parameters. The same applies to the
chosen values of the independent variables, which are set using the setx() method. The
model-specific components in these algorithms are the functions f(·) and g(·), representing
the systematic and stochastic components. These functions are specified in the qi() method
in the bottom level of inheritance.
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Algorithm 1: Simulating Predicted Values
1 Gather estimated model parameters γ = vec(β, α).
2 Draw simulations γ̃ ∼ N(γ̂, V (γ̂)).
3 Set independent variables at selected values xc.
4 Compute systematic parameter θ̃ = g(xc, β̂).
5 Simulate predicted value ỹc ∼ f(α̃, θ̃).
6 Repeat steps 2 through 5, m times.

Algorithm 2: Simulating Predicted Values
1 Gather estimated model parameters γ = vec(β, α).
2 Draw simulations γ̃ ∼ N(γ̂, V (γ̂)).
3 Set independent variables at selected values xc.
4 Compute systematic parameter θ̃ = g(xc, β̂).
5 Simulate predicted value ỹc ∼ f(α̃, θ̃).
6 Repeat step 5, k times, and average Ẽ(ỹc|γ̃) =

∑k
i=1 ỹ

(i)
c /k

7 Repeat steps 2 through 6, m times.

2.6 An integrated workflow for analysis

Pre-processing and post-processing steps are often important or necessary additions to a
statistical estimator to construct meaningful quantitative reasoning: missing data is endemic
in observational social science, and generally needs to be corrected for to avoid bias and
inefficiency in statistical estimates (Schafer, 1997; King et al., 2001; Honaker and King,
2010); failing to account for known measurement error leads to attenuation in the simplest
cases, and unpredictable bias in many others (Blackwell et al., 2016a,b); matching as a
preprocessing step reduces model dependence (Ho et al., 2007) and is often central to causal
reasoning (Stuart, 2010); counterfactual inference becomes increasingly fraught and model
dependent as it reaches the support of the data (King and Zeng, 2006, 2007).

In order to facilitate ease of the statistical workflow, Zelig accepts the output objects of
many packages for preprocessing, in the place of datasets, seamlessly in the data argument,
and can include the required output objects for postprocessing packages in the Zelig object.
These include the Amelia package for missing data and measurement error Honaker et al.
(2011), the MatchIt Ho et al. (2011) and CEM Iacus et al. (2009) packages for constructing
matched datasets, and the WhatIf package for counterfactual reasoning Stoll et al. (2005).
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3 New features

3.1 Citation methods

While Zelig brings many novel methods for model interpretation, it relies foundationally
on the work of the community of R package authors who construct models, and those who
bridge those packages into the Zelig architecture, as well as the packages that provide a large
number of pre- and post- processing steps in a statistical workflow that integrate with Zelig
(see section 2.6). Giving proper credit to all the constituent contributions is important to any
open source project. Also, in statistical software there can too easily be a disjuncture between
the academic literature that describes statistical or algorithmic theory, and the codebase that
implements these developments; it is centrally important to provide information to the user
as to where to learn more about the computational methods the user has employed in their
work.

To bring important focus to these issues, Zelig has built a novel architecture for tracking
a workflow and accumulating citation and reference information by means of citation()
and reference() methods available to every Zelig object.

As we describe, many of these references are constructed by package authors themselves,
however, some items have complex layers of contribution. We work under the analogy
that calls to Zelig models are like items in an edited volume, and cite them using such
conventions. Zelig is the collected volume, while the contributors who bridge functions may
be subeditors who edit an article for integration into a collected volume, and the wrapped
package represents the original primordial work.

The citation architecture has several new features for automatically constructing citations
for Zelig models and constructing lists of references to describe a Zelig workflow:

1. Model Citations: Citations for contributing authors to individual Zelig models are
handled through Zelig’s cite() method. Each individual Zelig model object has fields
designated for citation information in the Zelig Reference Class. Examples of such
fields include author and year. When a model is added, these fields are inherited into
the RC and populated by the author. This provides the benefit of declaring relevant
fields and how those fields are to be formatted into a citation at the top-level of the
inheritance. As a result, model authors only need to specify their citation fields. This
allows for a consistent and reliable method of citation across all contributed models.

When a model is run, a cite for that model is constructed and printed to screen. This
follows the ordering previously discussed (Zelig Author -if no- Package Author -if no-
Model (wrapper) Author) within the edited volume analogy. These cites now appear
in the docs on zeligproject.org for every example. Below is a screenshot when a Model
Author (wrapper) exists for a model:

> zam.out <-zelig(yb ∼ xx + zz, data = data, model= "normal.bayes",
verbose = FALSE)
How to cite this model in Zelig:
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. Ben Goodrich, and Ying Lu. 2013.

. normal-bayes: Bayesian Normal Linear Regression
in Christine Choirat, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
. "Zelig: Everyone’s Statistical Software," http://zeligproject.org/

And here is a screen shot when there is no Model Author which defaults to the author
of the original package:

> zam.out <-zelig(yb ∼ xx + zz, data = data, model= "negbin",
verbose = FALSE)
How to cite this model in Zelig:
. William N. Venables, and Brian D. Ripley. 2008.
. negbin: Negative Binomial Regression for Event Count Dependent Variables
in Christine Choirat, James Honaker, Kosuke Imai, Gary King, and Olivia Lau,
. "Zelig: Everyone’s Statistical Software," http://zeligproject.org/

2. Automatic Reference Sections: As a new feature, as a workflow propagates through
a Zelig object, the Zelig object builds up an automatic reference list automatically,
that the user can ask for at any time. For example, if their dataset is an imputed
Amelia object, then they get an Amelia cite. If they use a model in Zelig, then Zelig
attaches cites to that model (for example, there are two literature cites (King and
Zeng, 2001a,b) that explain the Relogit model if that is the model used in Zelig) as
well as automatically creating a cite to any package we wrapped to implement the
model (Like the Survival package we use for Weibull models). If they then run a GIM
test, then it attaches a cite to King and Roberts King and Roberts (2015) explaining
the assumptions of that test diagnostic. And so it can continue. When Zelig is finished
running, you have simultaneously created a list of all the citations you might want to
the pieces and procedures you used, and can ask for this with a utility method. As
an example, in the project page documentation, every single model page always has
a short reference section, and none of these have been written by hand. All of these
are automatically constructed by Zelig, via a call to the citation method on the zelig
object that resulted from the explanatory example in the documentation. Here’s an
example:

> zn.out$references()
Honaker J, King G and Blackwell M (2011). "Amelia II: A Program for
Missing Data." *Journal of Statistical Software*, **45** (7), pp. 1-47.
<URL:http://www.jstatsoft.org/v45/i07/>.

King G and Roberts M (2014). "How Robust Standard Errors Expose
Methodological Problems They Do Not Fix, and What to Do About It."
Political Analysis*, pp. 1-21. <URL: http://j.mp/InK5jU>.
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R Core Team (2014) *R: A Language and Environment for Statistical
Computing*. R Foundation for Statistical Computing, Vienna, Austria.
<URL:http://www.R-project.org/>.

Package authors can declare a CITATION file in their package with the ways they
would like their package cited, including both a citation to the R package and to
related journal articles. If that field exists we use that to credit package authors in
the way they most prefer, otherwise we build our own citation from the meta data
available in that package’s DESCRIPTION file. In this fashion, most of the references
Zelig can construct do not have to be collected or coded by hand, or kept up to date.
They are automatically generated from the wrapped package files, and kept up to date,
in a distributed fashion, by the original package authors.

3. Zelig CITATION file: Relatedly, Zelig now has such a CITATION file, if any other
author was to use one of the utilities in R that exist to ask Zelig for its own preferred
citation. This is distinct from the model citation created above in item 1. If someone
queries the Zelig package for citations, presently, it reads:

To cite Zelig in publications please use:

Choirat C, Honaker J, Imai K, King G and Lau O (2015). *Zelig: Everyone’s
Statistical Software*. Version 5.0-3,
<URL: http://zeligproject.org/>

Imai K, King G and Lau O (2008). "Toward A Common Framework for Statistical
Analysis and Development." *Journal of Computational Graphics and Statistics*,
*17*(4), pp. 892-913.
<URL: http://j.mp.msE15c>.

3.2 Help methods

Zelig’s help() method works in a similar way. Every model has an associated vignette avail-
able on zeligproject.org. Call the help() method opens this URL in the user’s browser.
This allows fast access to help files and also the ability to view the help files in the user’s
browser while continuing work in R. Defaults for the URL are specified at the top level of
the inheritance. For example, zeligproject.org is the default URL. However, if not models
are added the contributor has the option to overwrite the default URLs by populating the
URL fields further down the inheritance.
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3.3 Architecture for Weighting

Weights are often added to statistical models to adjust the observed sample distribution in
the data to an underlying population of interest. For example, some types of observations
may have been intentionally oversampled, and need to be downweighted for population
inferences, or weights may have been created by a matching procedure to create a dataset
with treatment and control groups that resemble randomized designs and achieve balance in
covariates.

Weights can now be added to any and every model in Zelig. The weights argument, can
be a vector of weight values, or a name of a variable in the dataset.

Not all the R implementations of statistical models that Zelig uses have been written to
accept weights or use them in estimation. When weights have been supplied by the user, but
weights are not written into the package for that model, Zelig is still able to use the weights
by one of two procedures:

• If the supplied weights are all integer values, then Zelig rebuilds a new version of the
dataset by duplicating observations according to their weight (and removing observa-
tions with zero weight).

• If the weights are continuously valued, Zelig bootstraps the supplied dataset, using the
relative weights as bootstrap probabilities.

3.4 Scalability with dplyr package

Zelig leverages two important features of dplyr (Wickham and Francois, 2015): (1) it is data-
source agnostic, and can work with a local in-memory data frame as well as a connection
to a SQL database server; and (2) it provides highly-efficient grouped operations. Grouped
operations are a very strong benefit of using dplyr. Previous versions of Zelig were striving
to have a by argument to perform model analysis along categorical variables. The behavior
of the by function in base R

by(warpbreaks, warpbreaks[,"tension"],
function(x) lm(breaks ~ wool, data = x))

can be simplified with Zelig and does not require defining an anonymous function

z.out <- zelig(formula = breaks ~ wool, data = warpbreaks,
model = "ls", by = "tension")

Besides allowing for running zelig along categorical variables, the dplyr-based by argu-
ment is flexible enough to be instrumental in combining Amelia’s imputed datasets (Honaker
et al., 2011) and creating weighting schemes, such as those used in the bootstrap or in survey
models.
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3.5 Unit tests for stochastic functions

Another new feature is an automated unit testing framework that assesses the accuracy and
reliability of statistical models ported in Zelig. The fundamental issue in testing statistical
models is to extract a property of an estimator (e.g., bias or efficiency) and determine a way
to test for that property without rewriting the estimator. One way of doing this is to specify
an estimator’s data generating process and simulating a true quantity of interest which can
be used to consider different properties of an implemented model. We begin with the premise
that it is generally desirable for statistical estimators to be unbiased and we test for this
property using expected values and the simulations-based approach described in King et al.
(2000).

Unit testing, and regression testing more broadly, are important components in large-
scale team-sourced software projects to ensure that as dependencies change, or as features are
continually adapted, no underlying functionality is unwittingly broken. Unit tests typically
consist of small functionality tests of key modules of the code which should always give
a known, verifiable output from a specified test set of inputs. Unit testing is a type of
regression testing, but regression testing also includes broader functional performance tests
of the entire system. In a software platform like Zelig, many of the outputs are themselves
stochastic, and thus vary in output even given the same inputs2. This makes unit testing of
stochastic modules such as statistical estimators a challenging task.

To guarantee that as the packages Zelig depends on are revised, and as contributors
make new additions to Zelig functionality, the underlying statistical results can be continu-
ally verified we developed a testing framework, based on the Monte Carlo methods commonly
employed by researchers to test unbiasedness of newly developed statistical estimators. Our
testing framework is based on a novel algorithm for unit testing stochastic model and is de-
signed to (1) ensure that implementations of statistical estimators are correct (unit testing),
(2) ensure that dependencies have been ported correctly (module testing), and (3) ensure
that changes in dependency package do not invalidate the implementations of statistical and
analytical methods (regression testing). The algorithm leverages Monte Carlo simulations
and compares the distribution of simulated quantities of interest to true quantities of interest.
Algorithm 3 describes the algorithm implemented in our method.

To begin, we calculate y∗, the true expected values, using the data generating process
supplied. These expected values are akin to a gold standard to which simulated expected
values from Z(·) are compared. To calculate y∗, we set out model’s coefficient estimates, β,
and any other model parameters, α. We specify the range of covariate values, [a, b], over
which we will calculate our expected values. We then construct a sequence, ~x, over that
range, and calculate θ, the systematic component of our model. We can then calculate y∗

2Setting seeds for pseudorandom number generators can ensure the exact same answers are produced on
repeated calls to the same codebase, but small changes in the codebase that do not introduce any errors,
such as the order in which different random draws are made, or their method of storage, or even updates
to the underlying operating system, can trigger stochastic differences from the same random number seeds
while not being caused by any underlying error or fault in the codebase.
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Algorithm 3: Algorithm for Monte Carlo Unit Tests
1 There exists an estimator, Z(·), and a data generating process specified by f(θ, α) and
θ = g(x, β).

2 Set model parameters β, α and covariate range a, b.
3 Construct a sequence, ~x, over [a,b].
4 Calculate θ = g(~x, β).
5 Calculate y∗ = E(y|~x, β, α) = mean of m draws from f(θ, α).
6 Simulate x̃ ∼ U(a, b).
7 Calculate θ = g(x̃, β).
8 Simulate ỹ ∼ f(θ, α).
9 Estimate Ẑ(x̃, ỹ).

10 Draw β̂, α̂ from N(βZ , αZ).
11 Estimate ŷ = E(y|~x, β̂, α̂).
12 Repeat steps 10 and 11 some large number (perhaps 1,000) of times to estimate a

distribution of expected values.

by taking the mean of m draws from f(θ, α), where an m of 1,000 is sufficient.
At this point we know our true expected value, but we still need a data set on which

Z(·) estimates a distribution of expected values to compare against. In our implementation,
we found that the appropriate number of observations for this data set should be an N no
less than 1,000. Any N greater than 1,000 leads to comparable results and any N lower
than 1,000 leads to inconsistent results. To construct such a data set, we draw x̃ from a
Uniform distribution with start and end arguments [a, b]. We then calculate θ and draw ỹ
from f(θ, α). We now have a data set for which we know the true expected value for this
statistical model.

Next, we estimate Ẑ(x̃, ỹ), retrieve βZ and αZ , and draw β̂ and α̂ from a Normal
N(βZ , αZ). We may now estimate ŷ = E(y|~x, β̂, α̂) and calculate our test statistical com-
paring y∗ and ŷ. We then repeat the process of simulating a data set, estimating Z(·), and
estimating ŷ k times where k of 1,000 is likely sufficient. This produces a distribution of
simulated expected values to which we visually compare to true predicted values.

Figures 2 and 3 presents such a visual comparison with E(Y |X) in blue with confidence
interval and ŷ∗ in red for a least squares and tobit estimator across a regular sequence of
simulated values of X between 0 and 1. A cursory examination of both plots indicates a
strong correlation between two quantities of interest suggesting that the both estimators are
asymptotically unbiased and working properly.

This Monte Carlo-based approach to unit testing assesses the extent to which implemen-
tations of maximum likelihood estimators are asymptotically unbiased. An asymptotically
unbiased estimator should (on average) provide the correct answer if implemented correctly.
The algorithm described above, provides a way for testing for this property by considering
whether an estimator’s expected values line up with its functional form (e.g., mean predic-
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Figure 2: Least Squares Regression Unit Test,
β0 = 0, β1 = 2
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Figure 3: Tobit Regression Unit Test,
β0 = 0, β1 = 2
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tion). If the estimator is correctly specified, simulations of expected values should agree with
the functional form described by a correct data generating process. This data generating
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process tell us analytically where the center of the functional form is.
Because this is true for the majority of maximum likelihood estimators, a passed test tells

us that the estimator is asymptotically unbiased. Because this is one of (if not the most)
desirable property of an estimator for most applications, we interpret a successful result to
be a correctly specified model. It is important to note, however, what a passed test does
not tell us. It does not provide any information about an estimator’s other properties (e.g.,
efficiency) and because little work has been done on testing for these other properties, we
do not consider them there.

A failed unit test signals a mismatch between the expected values simulated from the
estimator and its data generating process. This suggests that either the implementation
of the estimator or the data generating process is wrong. If the analyst believes that it is
easier to write the dgp (and is therefore more confident that it is correctly specified) than
the estimator, it is more likely that the estimator is wrong. In this way, the test is like a
fire alarm that can indicate that something is wrong without specifying exactly what the
problem is. To the extent that the analyst knows the dgp to be correct, this fire alarm is
interpreted as the code is wrong and in this way is a unit test. To be sure, it is possible that
a incorrectly specified estimator passes the test, but this is reasonably unlikely because both
the dgp and the estimator have to be wrong in exactly the same way.

4 Example: Implementing the Poisson model

The Poisson model is a discrete count model with stochastic component f(yi|λ) = exp(−λ)λyi
yi!

and systematic component λ = exp(xiβ) (King, 1989). It is implemented in Zelig using the
glm library. In this section we use the Poisson to demonstrate how to add a model to Zelig.

The zelig() method in Zelig estimates a statistical model by wrapping an existing
function for estimating that model. For the Poisson, this is glm(). Specifically, using the
glm function and the “sanction” data in Zelig, a Poisson model may be estimated as:

data(sanction)
fit <- glm(formula = num ~ target + coop,

family=poisson(link="log"), data=sanction)

From the developer’s perspective, what we are actually doing when we add a model to
Zelig is extending the inheritance tree by adding a new RC. Looking at Zelig’s inheritance
structure, we can see that there exists a Zelig-glm RC that inherits from a Zelig RC. We
want to extend this by adding a Zelig-poisson RC that inherits from Zelig-glm, and therefore
also from Zelig. We do this in a new R script by:

zpoisson <- setRefClass("Zelig-poisson",
contains = "Zelig-glm", fields = list(theta = "ANY"))

18



Through the contains argument we have inherited the fields and methods of Zelig-glm,
and through the fields argument we have added a list of fields to Zelig-poisson, which is
here just one field named “theta” whose class is “ANY”. Next, we write our method for
specifying the required fields to initialize Zelig-poisson. There are four required arguments
for estimating a poisson regression: formula, family, link, and data. The formula and
data fields are required of all models in Zelig and are therefore top-level fields defined by
methods in the Zelig RC. This is the value of inheritance: to add the poisson we are not
concerned with these top-level fields. The family and link fields, however, must be specified
because they are particular to the poisson.

The family and link fields are inherited through Zelig-glm, where they are created and
restricted to the character class, but not populated. For the poisson, family is “poisson”
and link is “log”, and so we specify this in the initialize method as:

zpoisson$methods(
initialize = function() {

callSuper()
.self$family <- "poisson"
.self$link <- "log"

}
)

Thus, when any object that inherits from Zelig-glm is instantiated, the family and link
fields are passed to that object and then populated by the initialize() method. This is
all this is required to estimate a poisson regression using Zelig:

z5 <- zpoisson$new()
z5$zelig(num ~ target + coop, data=sanction)
z5$setx()

The Zelig method setx() is also a top-level method that will not be of concern to many
developers. When setx() may be of concern is in the case of multiple equations or models
with parameters outside of the formula equation that are of interest to set to specific values.
For the poisson, this is not the case and the command z5$setx() may be used to set default
covariate values.

At this point we have extended the Zelig inheritance and successfully wrapped the poisson
model from glm, but we have not yet populated the fields necessary to simulate quantities
of interest. First, we populate the linkinv field that is inherited from Zelig-glm. This
field is restricted to type function, and for the poisson regression it is equivalent to the
systematic component exp(xiβ). We may assign this function to linkinv, or more easily we
may use the one that glm is already using by setting linkinv to eval(call(.self$family,
.self$link))$linkinv. Note that family is “poisson” and link is “log”. Equivalently, we
can also write: .self$linkinv <- function(m){exp(m)}.
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Finally, for any contributed model the quantities of interest are specified in its qimethod.
For the poisson, we will just return a list containing the predicted values and the expected
values. To do so, we require two arguments: (1) draws of the model’s estimated parameters
and (2) the covariate values specified by setx(). Each of these arguments are higher-level
objects that may be passed to qi().3 Let simparam be a matrix of draws for every parameter,
and mm be the value at which we set our independent variables.

zpoisson$methods(
qi = function(simparam, mm) {

eta <- simparam %*% t(mm)
theta.local <- matrix(.self$linkinv(eta), nrow = nrow(simparam))
ev <- theta.local
pv <- matrix(NA, nrow = nrow(theta.local), ncol = ncol(theta.local))
for (i in 1:ncol(theta.local))

pv[, i] <- rpois(nrow(theta.local), lambda = theta.local[, i])
return(list(ev = ev, pv = pv))

}
)

The remainder of qi() is particular to the poisson model but follows the simulation
procedure described in King et al. (2000). Specifically, we multiply the drawn parameters
(simparam) and the covariate values (mm). We then apply the inverse link to each row in
the resulting matrix. This produces a one-column matrix with a number of rows equal to
the number of times we drew from the distribution of model parameters; each cell is our λ
for that simulation. To estimate the predicted values we draw from the Poisson distribution
using these values of λ. For the poisson, the expected value is simply λ.4 Our expected
values and predicted values are returned as a list that may be later used for visualizations.

5 The Zelig API
The Zelig API is automatically constructed by writing metadata contained inside the Zelig
object to a json file. The metadata describes the model and the assumptions on explanatory
and dependent variables, provide citations for contributing authors, URLs for documentation
and other help files, the inheritance structure, test statistics associated with the model, and
additional information. This API facilitates the integration of Zelig with graphical user
interfaces, visualization tools, and databases, among other integrations. Its purpose is to
provide machine readable information about the contents of the Zelig library and the models
it contains. Thus, as Zelig expands, any user interface, documentation, or library description

3The covariate values are chosen using setx(), and the parameter values are drawn in the sim() function
in the Zelig RC.

4The full script is included in Zelig/R as model-poisson.R. Here you will see additional fields that have
been populated, include things like authors and description.
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may be automatically updated without the owner having to learn about the underlying
changes to Zelig and manually change their code or description to reflect these changes.

The Zelig project website and the TwoRavens tool for statistical analysis are two examples
of projects that utilize the Zelig API.5

5.1 The Zelig Project Website

One of the difficulties with maintaining project websites is maintaining project websites.
That is, resources have to be devoted to ensuring the website and the software project are
in agreement with one another. Such resources are often scarce, and even when they are
available this problem becomes especially difficult when users are encouraged to contribute
to the software, as is the case with Zelig. Even when there is a platform such as Github
through which there is a clearly marked trail of contributions, it is often the case that
different individuals manage the software and the website. This problem is exacerbated
when third-parties are also describing and disseminating the software.

The machine readable JSON simplifies the maintenance of the Zelig project website
(zeligproject.org). Among its features, this site allows users to browse all models included
in the Zelig library and explore Zelig’s inheritance structure through a visualization created
using D3. A subset of this can be see in figure 4. This figure shows, for example, that logit
inherits from binchoice, which inherits from glm. As seen in the full visualization, glm is
included in the Core distribution and inherits from zelig.

Figure 4: A subset of the Zelig Inheritance Tree.

The visualization in figure 4 is constructed dynamically from the Zelig API and is auto-
matically revised if the inheritance structure of Zelig is changed in any way. The terminal
nodes on the tree contain the names of the statistical model (e.g., logit) and, when clicked,
redirect the user to the URL of the help file for that particular model. Again, the URLs
are defined dynamically from the API, so a change to the Zelig code base does not require
a change to the project site.

5See zeligproject.org and github.com/IQSS/TwoRavens for additional information about these
projects.
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Figure 5: The TwoRavens interface.

In short, producing machine readable metadata in the R library itself simplifies the
maintenance of the project site and helps to ensure the software and the site contain the
same information. It also provides third-party sites and graphical interfaces access to the
contents of Zelig, as is the case with TwoRavens.

5.2 The TwoRavens Interface

Zelig’s consistent syntax across statistical models, easily retrievable statistical estimates, and
API all enable a simple integration with graphical user interfaces such as TwoRavens.

TwoRavens is a gesture-based, Web application for statistical analysis (Honaker and
D’Orazio, 2014; D’Orazio and Honaker, 2016). It integrates with data repositories for access
to data and statistical software for computation. The interface is designed to be a thin, client-
side application that reads only metadata and is usable by researchers with little knowledge
of statistical software. The metadata that TwoRavens reads contains information about the
data, as well as metadata about the statistical tools available to the user.

An example of the interface being used with data from Fearon and Laitin (2003) is shown
in figure 5. Users make their data selections in the left panel, specify relationships and tag
variables with certain properties in the center panel, and select their statistical model and
view results in the right panel.

The right panel is primarily where the Zelig metadata are used and where statistical
estimates are displayed. It contains three tabs: Models, Set Covariates, and Results. The
Models tab lists all available models contained in the metadata. On mouseover, users can
see brief descriptions of these models, as shown in figure 6 for the negative binomial model.
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Figure 6: The Models tab. Figure 7: The Set Covariates tab.

The Set Covariates tab, shown in figure 7, enables users to select values of the independent
variables, as with Zelig’s setx().

After the data has been selected, the relationships that the user wishes to model have
been specified, and a dependent variable and statistical model have been selected, TwoRavens
sends this information to a server for estimation. The consistency of the Zelig syntax means
that regardless of which model is chosen, the call to Zelig is essentially the same. The model
name will change, as will the formula representation, but those are inputs to a consistent list
of arguments required to estimate the model. In the absence of this consistency, TwoRavens
would need to construct the R commands differently for every model.

Upon estimation, TwoRavens retrieves the statistical estimates and any visualizations
produced by Zelig and displays that information to the user. Regardless of the model,
coefficients can be pulled using the getcoef() method. This is a simple, but important
feature as it is not always the case across R libraries that these estimates are in the same
location or that they exist within the object at all. For example, the estimates might only
be available through the summary function.

To facilitate interpretability, Zelig provides users with visualizations of quantities of in-
terest. These graphics are uploaded to TwoRavens and displayed alongside the statistical
estimates. Although it is increasingly common for developers to provide graphical features
for users to visualize their statistical results, there is very little consistency in the syntax
for doing so. However, for TwoRavens the graphics are uploaded as-is to the user’s browser.
Thus, as long as the visualization is produced through Zelig’s plot() method, the visualiza-
tion may be uploaded directly to the user’s browser for interpretation.
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The Zelig API, as well as its consistency in syntax for estimating models and retrieving
results, enables interfaces such as TwoRavens to easily integrate with Zelig.

6 Conclusion
Zelig 5 has been designed to take advantage of how statistical models are nested, how different
statistical families are related, and how we often pass the same arguments and call the
same functions for different models. R’s reference classes, through their ability to handle
inheritance, enabled us to do this. As much as is possible, features are implemented in
the code once and are inherited by instances of models. This facilitates the addition of
new models, as well as new features across existing models. Examples include citation and
help methods, and stochastic unit tests. Everything necessary to replicate an estimation is
stored in the Zelig object. As a result, replication is a simple as saving and loading a single
object. Zelig 5 contains an API that may be used for integrating Zelig with other software
applications, including graphical user interfaces.
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