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Abstract

We extend a unified and easy-to-use approach to measurement error and
missing data. In our companion article, Blackwell, Honaker, and King give an
intuitive overview of the new technique, along with practical suggestions and
empirical applications. Here, we offer more precise technical details, more
sophisticated measurement error model specifications and estimation pro-
cedures, and analyses to assess the approach’s robustness to correlated
measurement errors and to errors in categorical variables. These results
support using the technique to reduce bias and increase efficiency in a wide
variety of empirical research.
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Introduction

In this article, we extend and technically undergird a new unified approach

to analyses of data sets with both measurement error and missing data,
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extremely common coexisting conditions throughout applied social science

research. The technique is called multiple overimputation (MO) and it gen-

eralizes the popular approach of multiple imputation (MI) for missing data as

well as a methodology for measurement error. The technique benefits by for-

malizing the idea of regarding missing data as an extreme form of measure-

ment error, or measurement error as a form of partially missing data. Applied

researchers can easily use the technique to preprocess their data to deal with

both methodological problems simultaneously and then use whatever tech-

nique they might have applied to their data if it had neither problem.

Blackwell, Honaker, and King (in press; BHK, hereinafter) offer an over-

view of MO, along with empirical applications and suggestions for practice.

In this article, we first offer a more precise formulation of the methodology,

its assumptions, and its implementation (second section). Next, we show how

to estimate rather than assume the variances in more sophisticated measure-

ment error models (third section). We then show how MO remains robust for

common categorical variables even when specifying a model for continuous

measurement error (fourth section) and for different types of correlated mea-

surement error when the measurement error model assumes independence

(fifth section). Finally, we offer detailed simulations to provide guidance for

the number of data sets to overimpute (sixth section). The seventh section

concludes.

Model and Estimation

Here we introduce the general MO model and a specific expectation–maximi-

zation (EM) algorithm implementation. We also show that it is equivalent to

MI with observation-level priors as introduced by Honaker and King (2010).

We also offer more general notation than that in BHK.

Notation

Consider data xij with observations i ¼ 1; . . . ;N and variables j ¼ 1; . . . ; p.

Although numerical values for all elements of x � xijj8i; j
� �

exist, we have

knowledge about each through a three-part measurement mechanism:

mij ¼
0 if xij is observed

1 if xij is missing and an unbiased proxy wij is observed

2 if xij is missing

8<
: : ð1Þ

The three cases correspond respectively to (0) direct observation of

the true value; (1) unbiased estimation of the true value, E wij

� �
¼ xij and
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(2) classical missingness, for which the true value and proxies of it are

unavailable. We partition x into sets where the true values are observed or

missing: x ¼ xobs; xmisf g; where

xobs � xijj 8i; jð Þ ^ mij ¼ 0
� �� �

and ð2Þ

xmis � xijj 8i; jð Þ ^ mij > 0
� �� �

: ð3Þ

Thus, we observe portions of the covariates xobs, the measurement

mechanism m � fmijj8i; jg, and the proxies w � fwijjð8i; jÞ ^ ðmij ¼ 1Þg.
Our goal is to infer the distribution of x, pðxjyÞ � pðxobs; xmisjyÞ, where y is

an unknown parameter vector. We begin with the observed-data probability

density function

p m;w; xobsjy; g;fð Þ ¼
ð

p mjxobs; xmis;w;fð Þ

� p wjxmis; xobs; gð Þp xobs; xmisjyð Þdxmis;

ð4Þ

where f is the parameter of the distribution of m, and g is the parameter of

the distribution of the measurement mechanism.

Assumptions

We require two key assumptions. First, we enable researchers to avoid spe-

cifying a full probability density for the measurement assignment, pðmjxobs;
xmis;w;fÞ. To do this, we generalize MI’s (realized) missing at random

assumption:

Assumption 1 (Ignorable Measurement Mechanism Assignment

IMMA): (a) For any values of m, xobs, w, xmis, and x0mis,

pðmjxobs; xmis;w;fÞ ¼ pðmjxobs; x
0
mis;w;fÞ; ð5Þ

and (b) the parameters governing m, f, are distinct from those governing

w, g, and x, y, in equation (4).

Here, xmis and x0mis are two possible realizations of the missing data, so that

equation (5) says that the distribution of the mismeasurement indicator, m, is

the same no matter the value of the missing data.

We also assume knowledge of the measurement error data generation pro-

cess, allowing its indexed parameter vector to be known or estimated.
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Assumption 2 (Measurement error distribution). The distribution

pðwjxmis; xobs; gÞ is known up to its parameters g. The parameters g
are either known or a consistent estimator (ĝ s.t. ĝ �!p g) is available.

The Observed-data Likelihood

We begin with three definitions. First, we specify the joint likelihood that

explicitly handles the presence of missingness or measurement error:

Ljðy; g;fÞ ¼ pðm;w; xobsjy; g;fÞ: ð6Þ

Second, we write the profile likelihood of ðy; gÞ with respect to the para-

meters of m:

Lpðy; gÞ ¼ maxf Ljðy; g;fÞ
� �

: ð7Þ

The profile likelihood is useful because the maximum likelihood esti-

mates (MLEs) from it will turn out to be the MLEs based on the joint

likelihood. Finally, we define the ignorance likelihood, ignoring the mea-

surement indicator m:

Lðy; gÞ ¼ pðw; xobsjy; gÞ: ð8Þ

We now use these definitions to establish the relationship between these

quantities, in a manner similar to results for the missingness at random

assumption in classical analyses of MI for missing data.

Theorem 1: Under IMMA (Assumption 1), the profile likelihood for

ðy; gÞ is proportional to the ignorance likelihood: Lpðy; gÞ / Lðy; gÞ.

Proof. Under IMMA, we can factor the joint likelihood as

Ljðy; g;fÞ ¼ pðm;w; xobsjy; g;fÞ ð9Þ

¼
ð

pðxobs; xmisjyÞpðwjxmis; xobs; gÞpðmjxobs; xmis;w;fÞdxmis; ð10Þ

¼
ð

pðxobs; xmisjyÞpðwjxmis; xobs; gÞpðmjxobs;w;fÞdxmis; ð11Þ

¼ pðmjxobs;w;fÞ
ð

pðxobs; xmisjyÞpðwjxmis; xobs; gÞdxmis; ð12Þ

¼ pðmjxobs;w;fÞLðy; gÞ: ð13Þ
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The second equality is simply the definition of the joint likelihood, the

third follows from IMMA, and the fourth and fifth from the properties of

expectations. Substituting this expression into the definition of the profile

likelihood (equation (7)) gives

Lpðy; gÞ ¼ maxf pðmjxobs;w;fÞLðy; gÞ½ � ð14Þ

¼ Lpðy; gÞmaxf pðmjxobs;w;fÞ½ � ð15Þ

/ Lðy; gÞ; ð16Þ

where the last equality holds because the second factor of the second line is

constant with respect to ðy; gÞ. c

What Theorem 1 tells us is that inferences based on Lðy; gÞ will be the

same as inferences about y and g from the profile likelihood and, thus, the

joint likelihood. Because we state IMMA in terms of all values of m, xobs, and

w, then this result will hold both in our realized sample and in repeated samples.

Thus, both Bayesian inference and general frequentist inference are justified

under this result (Seaman et al. 2013). From here on, we thus refer to Lðy; gÞ
as the observed-data likelihood, where its dependence on IMMA is implicit.

An EM Algorithm for Missing Data and Measurement Error

The EM algorithm is commonly used to maximize likelihoods intractable due

to missingness. In this section, we show how we can incorporate measurement

error into the standard EM algorithm for missing data. For expository pur-

poses, we assume that the true values of the measurement error distribution

parameters, g, are known and, thus, fixed. In the Heteroskedastic Measurement

Error subsection, we consider extensions for when g is estimated.

The object in the EM algorithm is the expectation of the log likelihood of

the complete data, averaged across the missing data given a current guess of

the parameters:

Q yjyðtÞ
� 	

¼
ð

log



p xmis; xobs;wjy; gð Þ

�
p xmisjxobs;w; y

ðtÞ; g
� 	

dxmis: ð17Þ

Note that the distribution of the missing data which we are averaging

across fixes the value of y, while the value in the complete-data log likeli-

hood is allowed to vary. The EM algorithm proceeds in two steps. First, in

the E-step, we compute the function Q yjyðtÞ
� 	

, which involves calculating

the posterior distribution of the missing data, conditional on the observed.
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The second step, called the M-step, maximizes QðyjyðtÞÞ with respect to y.

This becomes the new candidate value, y(tþ1), and the algorithm iterates until

convergence. Under suitable conditions (Wu 1983), the EM algorithm con-

verges to the MLE of y under the observed-data likelihood, Lðy; gÞ.
The complete-data log likelihood is straightforward in our general setup:

log pðxmis;xobs;wjy;gÞ½ � ¼ log pðxmis;xobsjyÞ½ �þ log pðwjxmis;xobs;gÞ½ �: ð18Þ

Because the last term only depends on the known (mis)measurement pro-

cess, it will not factor into the maximization of QðyjyðtÞÞ. This follows from

our (implicit) assumption that the parameters of the measurement process are

distinct from the parameters of the target data x. The measurement infor-

mation will enter the EM algorithm through its influence on the posterior

distribution of xmis:

pðxmisjxobs;w; y
ðtÞ; gÞ / pðxmisjxobs; y

ðtÞÞpðwjxmis; xobs; gÞ: ð19Þ

Thus, we can write the objective function in this case as

QðyjyðtÞÞ ¼
ð

log pðxmis; xobsjyÞ½ �pðxmisjxobs; y
ðtÞÞpðwjxmis; xobs; gÞdxmis:

ð20Þ

Because equation (19) is a posterior for the missing data and equation (18)

is a complete-data log likelihood, all of the properties of the general EM

algorithm will apply to it here with the form given by equation (20). Namely,

this algorithm will converge to the MLE of y under the observed-data like-

lihood. If we replace the true parameters, g, with a consistent estimate, ĝ, the

EM algorithm will still converge to a consistent estimator of the complete-

data parameters by standard asymptotic arguments (Newey and McFadden

1994). While estimating g does not affect the consistency of our EM estima-

tor, it does affect the variance of the asymptotic distribution. In order to

achieve consistent variance estimates, we can rely on the nonparametric

bootstrap.

MO

Analyzing the true values of the data x would be much easier than the

observed data since the mismeasured and missing components contribute

to the likelihood (equation (8)) in complicated ways. Thus, MO seeks to form

a series of complete, ideal data sets: xð1Þ; xð2Þ; . . . ; xðBÞ. Each of these overim-

puted data sets is of the form xðbÞ ¼ ðxobs; x
ðbÞ
misÞ, so that the perfectly
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measured data are constant across the overimputations. We refer to this as

overimputation because we replace observed data w with draws from an

imputation model for xmis. To form these overimputations, we take draws

from the posterior predictive distribution of the unobserved data:

ðxðbÞmisÞ � pðxðbÞmisjxobs;wÞ ¼
ð

pðxðbÞmisjxobs;w; y; gÞpðy; gjxobs;wÞdydg: ð21Þ

Once we have these B overimputations, we can simply run B separate

analyses on each data set and combine them using straightforward rules in

one of the two standard ways in MI. See The Foundation: A Multiple Impu-

tation Model subsection in BHK.

Equation (21) suggests one way to create MIs: (1) draw y(b) from its pos-

terior pðyjxobs;w; gÞ and then (2) draw ðxðbÞmisÞ from pðxðbÞmisjxobs;w; y
ðbÞ; gÞ.

Usually, these procedures are implemented with either data augmenta-

tion (i.e., Gibbs sampling) or the EM algorithm combined with an addi-

tional sampling step. We focus here on how our method works in the

EM algorithm, since these two approaches are closely linked and often lead

to similar inferences (Honaker and King 2010; King et al. 2001; Schafer

1997). The EM algorithm from An EM Algorithm for Missing Data and Mea-

surement Error subsection will give us either an MLE or maximum a posteriori

(MAP) estimate of the parameters of the complete data, ŷ. With this estimate,

there are various ways to draw from the predictive posterior distribution. Here,

we apply the EM algorithm to a series of data sets drawn using the nonpara-

metric bootstrap and use the estimated value of ŷb in that bootstrapped sample

as a draw from the posterior of y. Of course, MO is not limited to the EM algo-

rithm; we could replace it with a suitable Markov chain Monte Carlo (MCMC)

approach as well.

A Specific Model Within the Class

In the above description of the model, we have left the distributions

unspecified. To implement a specific model, we must of course specify

this additional information. To make our estimation approach practical,

we narrow the class of allowable data generation processes to any distri-

bution that possesses the property of statistical duality. This is a simple

property (related to self-conjugacy in Bayesian analysis) possessed by a

variety of distributions, such as normal, Laplace, gamma, inverse gamma,

Pareto, and others (Bityukov et al. 2006).1 Here, we offer the most com-

mon choice in practice, which is that the complete (but partially unob-

served) data (x) are multivariate normal with mean m and covariance
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S. This implies that any conditional distribution of the ideal is also

normal.

The abovementioned measurement error distribution is, in its most general

form, a function of the entire ideal data vector, x, and some parameters, g. As

noted by Stefanski (2000), all approaches to correcting measurement error

must include additional information about this distribution. In the simple but

powerful special case, we assume that wij �indNðxij; l
2
ijÞ where the measure-

ment error variance l2
ij is known or estimable using techniques from the third

section. Our assumption corresponds to that of classical measurement error,

yet our modified EM algorithm can handle more general cases than this. If

the measurement error is known to be biased or dependent upon another vari-

able, we can simply adjust the cell-level means above and proceed as usual.

Essentially, one must have knowledge of how the variable was mismeasured.

The simulation results in the Robustness to Violating Assumptions subsection

further indicate that MO is robust to these assumptions in certain situations.

With the aforementioned measurement error model, the normality of the

data makes the calculation of the sufficient statistics straightforward. In a

slight abuse of notation, we can gather the independent measurement error

distributions on wij into a multivariate normal with mean xmis,i and covar-

iance matrix Li ¼ l2
i I , where l2

i ¼ fl2
ij; mij ¼ 1g and I is the identity matrix

with dimension equal to
P

j Ifmij ¼ 1g. To ease exposition, let y ¼ ðm;SÞ
and consider the case without fully missing values. When x comes from an

exponential family, the E-step involves calculating the expected value of the

complete-data sufficient statistics, marginalized across the missing data:

E½TðxÞjxobs;w; y
ðtÞ� ¼

ð
TðxÞ pðxmisjxobs; y

ðtÞÞpðwjxmis; gÞdxmis; ð22Þ

¼
ð

TðxÞ
Y

i

pðxi;misjxi;obs; y
ðtÞÞpðwijxi;mis;LiÞdxi;mis: ð23Þ

Here, T(x) is the set of sufficient statistics for the multivariate normal. Cal-

culating this expression is equivalent to evaluating QðyjyðtÞÞ in equation (20).

In order to calculate the expectation in equation (23), we must know

the full conditional distribution, which is pðxi;misjxi;obs;wi; y;LiÞ / pðxi;misj
xi;obs; yÞpðwijxi;mis;LiÞ. Note that each of the distributions is (possibly multi-

variate) normal, with ½xi;misjxi;obs; y� � N ðmejo;SejoÞ and ½wijxi;mis;Li� �
N ðxi;mis;LiÞ, where ðmejo;SejoÞ are deterministic functions of y and xi,obs.

This distribution amounts to the regression of xi,mis on xi,obs. If the values

were simply missing, rather than measured with error, then the E-step would
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simply take the expectations with respect to this conditional expectation.

With measurement error, we must combine these two sources of information.

Using standard results on the normal distribution, we write the full condi-

tional as

ðxi;misjxi;obs;wi; y
ðtÞ;LiÞ � N ðm�;S�Þ; S� ¼ ðL�1

i þ S�1
ejoÞ
�1;

m� ¼ S�ðL�1
i wi þ S�1

ejomejoÞ:
ð24Þ

We simply change our E-step to calculate this expectation for each cell

measured with error and proceed with the M-step as usual.2 That is, we would

find the values of m(tþ1) and S(tþ1) that maximize the likelihood with these

updated sufficient statistics in equation (23). Note that while we assume that

the measurement errors on different variables are independent, one could

incorporate dependence into Li. The result in equation (24) is identical to the

results in Honaker and King (2010), when we set a prior distribution for xi,mis

that is normal with mean wi and variance Li. See their article for additional

implementation details.

Finally, we note that the imputation of purely missing values for a given

observation will not directly depend on imputations of the mismeasured

value for that observation. This is because imputations are always computed

from a regression of a missing value on the observed data for that observa-

tion. Thus, since both missing and mismeasured variables are missing for a

given observation, the imputation of one will not affect the other. If there

is gold standard data for a mismeasured value, then the mismeasured variable

is observed and, thus, the imputations of the missing values can depend on

that variable. In this case, the mismeasurement model can influence the

imputed values for the missing data through its influence on the complete-

data parameters. This is appropriate, though, because the mismeasurement

model helps to push the complete-data parameters to reflect the true, under-

lying data, which is exactly the information being used to impute missing

values with gold standard measurements in the mismeasured variable.

Directly Estimating Measurement Error Variances

Earlier we assumed that the amount of measurement error is known or

estimable from the data. In the Specifying or Estimating the Measurement

Error Variance section of BHK, we show how to analyze variables with a

known proportion of measurement error or how to bound estimates when

it is unknown. However, auxiliary variables often exist, which can provide
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feasible estimates of the level of measurement error.3 The other models in the

literature reviewed in MO subsection all rely on the existence of such auxili-

ary information. First, when replicated correlated proxies are available, we

show how to estimate l2
j for variable j directly (Multiple Proxies subsection).

Second, we show how to proceed when l2
ij varies over the observations i or

when gold standard observations are available (Heteroskedastic Measure-

ment Error subsection).

Multiple Proxies

When multiple proxies (or ‘‘repeated measures’’) of the same true variable

are available, we can use relationships among them to provide point esti-

mates of the required variances, and to set the priors in MO. For example,

suppose for the same true variable xij we have two unbiased proxies with nor-

mal errors that are independent after conditioning on xij:

wi1 ¼ xij þ ui : ui � Nð0;l2
j Þ; wi2 ¼ axij þ bþ vi : vi � Nð0; ðcljÞ2Þ;

ð25Þ

where a, b, c are unknown parameters that rescale the additional proxy mea-

sure to a different range, mean, and different degree of measurement error.

The covariances and correlations between these proxies can be solved as

E½covðw1;w2Þ� ¼ a varðxjÞ and E cor w1;w2ð Þ½ � ¼ g var xj

� ��
var w1ð Þ, where

a is one of the abovementioned scale parameters and g is a ratio:

g2 ¼ a2 varðw1Þ
varðw2Þ

¼ varðxjÞ þ varðuÞ
varðxjÞ þ ðc2=a2ÞvarðuÞ ; ð26Þ

where all of these expectations are over units. If the measurement error is

uncorrelated with xj, the variances decompose as l2
j ¼ varðw1Þ � varðxjÞ.

This leads to two feasible estimates of the error variances for setting priors.

First,

s2ðuÞ ¼ varðw1Þ � covðw1;w2Þ ¼ varðw1Þ � varðxjÞ a; ð27Þ

which is exactly correct when a ¼ 1, that is, when w2 is on the same scale

(with possibly differing intercept) as w1. Similarly,

s2ðuÞ ¼ varðw1Þð1� corðw1;w2ÞÞ ¼ varðw1Þ � varðxjÞ g; ð28Þ

which is exactly correct when c ¼ a, g ¼ 1, that is, the second proxy has

the same relative proportion of error as the original proxy.
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Heteroskedastic Measurement Error

In some applications, the amount of measurement error may vary across obser-

vations. Although most corrections in the literature ignore this possibility, it is

easy to include in the MO framework, and doing so often makes estimation

easier. To include this information, we add a subscript i to the variance of the

measurement error: pðwijxij; l
2
ijÞ. We then consider two examples.

First, suppose the data include some observations measured with error and

some without error. For the gold standard observations, we have wij ¼ xij, or

equivalently l2
ij ¼ 0. The imputation model would only overimpute cell val-

ues measured with error, leaving the ‘‘gold standard’’ observations as is. If

the other observations have a common error variance, l2
j , then we can easily

estimate this quantity, since the variance of the gold standard observations is

s2
x and the mismeasured observations have variance s2

x þ l2
j . This leads to

the feasible estimator

l̂2
j ¼ ŝ2

mm � ŝ2
gs; ð29Þ

where ŝ2
mm is the estimated variance of the mismeasured observations and

ŝ2
gs is the estimated variance of the gold standard observations.

As a second special case of Heteroskedastic measurement error, MO can

handle situations where the variance is a linear function of another variable.

That is, when l2
ij ¼ rzi, where zi is variable and r is the proportional constant

relating the variable to the error variance. If we know r (or we can estimate it

through variance function approaches), then we can easily incorporate this

into the prior above using wi � Nðwijxij; rZiÞ.

Robustness to Categorical Variables Measured
With Error

While our imputation model assumes the data are drawn from a multivariate

normal distribution, non-normal variables, such as categorical variables, can

be included in the imputation and can even be overimputed for measurement

error. It is well known in the MI literature that imputation via a normal model

works well for categorical variables, and indeed as well as models designed

especially for categorical variables and even when the analysis model is non-

linear (Schafer 1997; Schafer and Olsen 1998).

To illustrate how these findings extend to the MO context, we construct

a simulation study with measurement error on a binary variable. To do so,

we use a similar setup to BHK, except that both the underlying latent variable

(which we call xi) and the mismeasured proxy (wi) are each a five-category

Blackwell et al. 11

 at Harvard Libraries on June 23, 2015smr.sagepub.comDownloaded from 

http://smr.sagepub.com/


ordinal variable. That is, xi is drawn from a binomial distribution with five

trials and a 0.2 probability of success. Note that this forces xi to exhibit skew.

To create measurement error, we add ui � Nð0; 0:2Þ to the categorical vari-

able and then use cutoffs at 0.5, 1.5, 2.5, 3.5, and 4.5 to force the noisy vari-

able to also be categorical. This leads to roughly 20 percent of the

observations to be miscoded and leads to a proportion of variance due to

measurement error, r, of 0.2. The goal, as before, is to correctly recover the

effect of xi on yi, where we have yi ¼ b0 þ b1xi þ b2zi þ ei.
4

We follow the same procedure as in the Specifying or Estimating the Mea-

surement Error Variance section of BHK and run MO with a range of

assumptions about r, where r is the proportion of variance due to measure-

ment error. In this simulation, we use the MO in its default form and leave the

values overimputed from the normal model as is, without rounding them to

their nearest category. Figure 1 shows the results of these simulations, with a

vertical dashed line that represents the amount of variance due to the contin-

uous measurement error, ui. Note that when we discretize the mismeasured

variable, it reduces the variance slightly; the true r will be slightly less than

the one denoted on the plot. The results from this more challenging test are

largely similar to our earlier simulations. Even in the face of skewed, catego-

rical latent and observed variables, MO is able to recover good estimates of

the slope, b1, around the true amount of measurement error. Further, MO

minimizes the root mean square error at the point as well. While this is a pro-

mising approach for categorical variables, tailored methods for misclassifica-

tion, such as Katz and Katz (2010), may outperform MO in applications that

primarily focus on measurement errors on binary variables.

Robustness to Correlated Measurement Errors

In this section and the next, we show how MO is robust to data problems that

may occur in a large number of settings and applications. We show here how

MO is robust to theoretical measurement dilemmas that occur regularly in

social science data.

Until now, we have assumed that measurement error is independent of all

other variables. We now show how to relax this assumption. Many common

techniques for treating measurement error make this strong assumption and

are not robust when it is violated. For example, probably the most commonly

implemented measurement error model (in the rare cases that a correction is

attempted at all) is the classic errors-in-variables (EIV) model. We thus first

briefly describe the EIV model to illustrate the strong assumptions required.

The EIV model is also a natural point of comparison to MO, since both can
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be thought of as replacing mismeasured observations with predictions from

auxiliary models.

The Foundation: The EIV Model

As mentioned earlier, assume yi and xi are jointly normal with parameters as

in BHK, equation (2). Suppose instead of xi we have a set of proxy variables

which are measures of xi with some additional normally distributed random

noise:

wi1 ¼ xi þ ui; ui � Nð0;s2
uÞ; ð30Þ

wi2 ¼ xi þ vi; vi � Nð0;s2
vÞ; ð31Þ

ordered such that s2
u < s2

v , making w1 the superior of the two proxies as it

has less noise.

Suppose the true relationship is yi ¼ axi þ ei1; and we instead use the best

available proxy and estimate yi ¼ bwi1 þ ei2 ¼ bðxiÞ þ bðuiÞ þ ei2. We then

get some degree of attenuation 0 < b < a since the coefficient on ui should

be zero. This attenuation is shown in one example in the right-hand side of

Figure 2 where the relationship between yi and w1 shown in red is weaker

than the true relationship with xi estimated in the left graph and copied in

black on the right.

In this simple example, we can calculate the expectation of this attenua-

tion. The coefficient on wi1 will be

E b̂1

h i
¼ E

P
i

ðxi þ ui � ðxþ uÞÞðyi � �yÞ
P

i

ðxi þ ui � ðxþ uÞÞ2

2
64

3
75 ¼

P
i

ðxi � �xÞðyi � �yÞ
P

i

ðxi � �xÞ2 þ s2
u

; ð32Þ

where xþ u and �x are the sample means of wi1 and xi, respectively. The last

term in the denominator, s2
u, causes this attenuation. If the variance of the

measurement error is zero, the term drops out and we get the correct estimate.

As the measurement error increases, the ratio tends to zero.

The coefficients in the EIV approach can be estimated either directly or

in two stages. A two-stage estimation procedure is the common framework

to build intuition about the model and the role of the additional proxy mea-

sure. In this approach, we first obtain estimates of xi from the relationship

between the w’s since they only share xi in common, ŵi1 ¼ ĝwi2, and then

use these predictions to estimate yi ¼ dŵi1 þ ei3, where now d̂ is an

unbiased estimate of a. The relationship between the two proxy variables
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is shown in the left-hand side of Figure 3, and the relationship between the

first stage predicted values of wi1 and yi is shown in blue in the right figure.

This coincides almost exactly with the true relationship still shown in black

in this figure.

In Figure 4, we illustrate how the EIV model performs in data that

meet its assumptions. The black distributions represent the distribution

of coefficients estimated when the latent data x* are available in a simu-

lated data set of size 500.5 The naive regressions that do not account for

measurement error are shown in red in both graphs. The coefficient on

wi1 is attenuated toward zero (bottom panel). The estimated constant term

is biased upward to compensate (top panel). In each simulated data set,

−4 −2 0 2 4 6

−2
0

2
4

6

x

y

−4 −2 0 2 4 6

−2
0

2
4

6

w1

y

Figure 2. On the left, we see the true relationship between yi and the latent xi. When
the mismeasured proxy wi1 is used instead, the estimated relationship (shown in red)
is attenuated compared to the true relationship (shown in black in both graphs).
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−2
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w2

w
1

−4 −2 0 2 4 6

−2
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2
4

6

ŵ1

y

Figure 3. The relationship between two mismeasured proxy variables (left) and the
relationship between the predicted values from this model and y (right). The rela-
tionship here, shown in green, recovers the true relationship, shown in black.
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we use the EIV model (in blue) and see that the distribution of estimated

parameters using the proxies resembles the distribution using the latent

data, although with slightly greater variance. Thus, there is some small

efficiency loss, but the EIV model clearly recovers unbiased estimates

when its assumptions are met.

We also run the MO on the same simulated data sets in which we ran the

EIV model. The distribution of coefficients (which we present subsequently)

recovers the distribution that would have been estimated if the latent data had

been available. Thus, in the simple setting where the assumptions of the EIV

model are met, our approach performs equivalently.

Robustness to Violating Assumptions

If we think of the coefficient on xi as the ratio of cov(x, y) to var(x), then the

attenuation in equation (32) is being driven by the fact that varðw1Þ > varðxÞ
because of the added measurement error. Therefore, varðw1Þ is not a good esti-

mate of varðxÞ, even though covðw1; yÞ is a good measure of covðx; yÞ. With

this in mind, the numerically simpler—but equivalent—one stage approach to

the EIV model has a useful intuition. We substitute covðw1;w2Þ as an estimate

−0.5 0.0 0.5 1.0 1.5

0
2

4
6

8
Distribution of estimates of β0

D
en

si
ty

True Coefficient
Denial Estimator
Errors−In−Variables (with correct assumptions)
Overimputation

−0.5 0.0 0.5 1.0 1.5

0
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4
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8

Distribution of estimates of β1

D
en

si
ty

Figure 4. Coefficients estimated from variables with measurement error (shown in
red) attenuate the effect of the independent variable toward zero and also bias the
constant in compensation. The estimates recovered from the errors-in-variables
(EIV) model (in green) recover the true distribution, but are of course less efficient
(slightly higher variance) than the original latent data (in black).
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of varðxÞ because w1;w2 only covary through x. Thus, we have as our estimate

of the relationship6:

d̂ ¼

P
i

ðwi1 � �w1Þðyi � �yÞ
P

i

ðwi1 � �w1Þðwi2 � �w2Þ
¼

P
i

ðxi � �xÞðyi � �yÞ þ uiðyi � �yÞ
P

i

ðxi � �xÞ2 þ uiðxi � �xÞ þ viðxi � �xÞ þ uivi

:

ð33Þ

In order to recover the true relationship between x and y, we need the

last term in the numerator and the last three in the denominator to drop out

of equation (33). To obtain a consistent estimate, then EIV requires: (1)

Eðui � yiÞ ¼ 0, (2) Eðui � xiÞ ¼ 0 and Eðvi � xiÞ ¼ 0, and (3) Eðui � viÞ ¼ 0.

Indeed, when these conditions are not met, the resulting bias in the EIV cor-

rection can easily be larger than the original bias caused by measurement

error. However, as we now show in the following three subsections, MO is

robust to violations of all but the last condition.

Measurement error correlated with y. The first of the conditions for EIV to

work is that the measurement error is unrelated to the observed dependent

variable. As an example of this problem, we might think that infant mortality

is related to international aid because donors want to reduce child deaths. If

countries receiving aid are intentionally underreporting infant mortality, to

try to convince donors the aid is working, then the measurement error in

infant mortality is negatively correlated with the dependent variable, foreign

aid. If instead countries searching for aid are intentionally overreporting

infant mortality as a stimulus for receiving aid, then measurement error is

positively correlated with the dependent variable. Both scenarios are concei-

vable. This problem with the EIV approach is well known, because the EIV

model has an instrumental variables framework, and this is equivalent to the

problem of assuring the instrument is exogenous of y in the more common

usage of instrumental variables as a treatment for endogeneity.

In Figure 5(a), we demonstrate this bias with simulated data.7 The violet

densities show the distribution of parameter estimates when there is negative

correlation of .1 (dashed) and .3 (solid) between the measurement error

and the dependent variable. In the latter case, the bias in the correction

has exceeded the original bias from measurement error, still depicted in red.

The blue densities show that positive correlation of the errors creates

bias of similar magnitude in the opposite direction. Again, the size of the bias

can be greater than that originally produced by the measurement error we

were attempting to correct. Moreover, the common belief with measurement

Blackwell et al. 17
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issues is that any resulting bias attenuates the coefficients so that estimates

are at least conservative; however, here we see that the bias in the EIV

approach can actually exaggerate the magnitude of the effect.

We now analyze the same simulated data sets with MO. To apply the MO

model, we estimate the measurement error variance from the correlation

between the two proxies and leave the mean set to the better proxy. As Figure

5(b) indicates, MO recovers the distribution of coefficients for each of the

data generation processes: The violet line represents the distribution when

there is positive correlation while the blue line (barely visible under the other

two) represents the distribution with negative correlation. All three distribu-

tions are close to each other and close to the true distribution in black using

the latent data.

Measurement error correlated with the latent true value. The second requirement

of the EIV model is that the measurement error is independent of the latent

variable. If, for example, we believe that income is poorly measured, and

wealthier respondents feel pressure to underreport their income while poorer

respondents feel pressure to overreport, then the measurement error can be

correlated with the latent variable.

In Figure 6(a), we demonstrate the bias this produces in EIV. Here, the error

in wi2 is correlated with the latent xi.
8 The biases are in the opposite directions

as when the correlation is with yi, although lesser in magnitude. Errors posi-

tively correlated with xi lead to attenuated coefficients, and negatively corre-

lated errors lead to overstated coefficients, as shown by the blue and violet

distributions in Figure 6(a), respectively. Dashed lines are the result of small

levels of correlations (+0.1) and the solid lines a greater degree (+0.3).

The coefficients resulting from MO, with measurement error variance

estimated from the correlation between the proxies, are contrasted in Figure

6(b). In the positive correlation case, the distributions recover the same para-

meters. Because they sit on top of each other, only the simulations with the

greatest correlation (+0.3) are shown. For both parameters, with positive

correlation, the MO estimates reveal no bias. With negative correlation, nei-

ther equation (27) nor (28) gives good estimates of the measurement error.

Here, we see bias in the coefficients similar to the EIV model. The key cause

of the bias is the inability to judge the measurement error when the proxy is

negatively correlated with the true latent x. If we had additional auxiliary

information to set the prior variance for wi1 correctly, and used wi2 simply

as a predictor, we would recover unbiased estimates with the MO model,

as is shown in the simulations in Figure 6(c). This follows the results seen

in equation (1) and in Figure 3 of BHK.
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Measurement errors that covary across proxies. The final condition requires the

errors in the proxies be uncorrelated. If all the alternate measures of the latent

variable have the same error process, then the additional measures provide no

additional information. For example, if we believe gross domestic product

(GDP) is poorly measured, it is not enough to find two alternate measures

of GDP; we also need to know that those sources are not making the same

errors in their assumptions, propagating the same errors from the same raw

sources, or contaminating each other’s measure by each making sure their

estimates are in line with other published estimates. To the extent the errors

in the alternate measures are correlated, then suv will attenuate the estimate

in the same manner as s2
u did originally.

Thus, we now simulate data where the measurement errors across alter-

nate proxies are correlated.9 Figure 7(a) shows positively (negatively) corre-

lated errors lead to bias in the EIV estimates that are in the same (opposite)

direction as the original measurement error. Intuitively, if the errors are per-

fectly correlated, both the original proxy and the alternate proxy would be the

exact same variable, and thus all of the original measurement error would

return. Importantly, what we see is that this is a limitation of the data that

MO cannot overcome when cell-level priors are directly created from the

observed data. As alternate proxies contain correlated errors, identifying the

amount of the variance in the proxies by the correlation of the measures is

misleading. Positive or negative correlation in the measurement errors leads,

respectively, to under- or overestimation of the amount of measurement error

in the data, directly biasing results as in EIV. When cell priors are set by the

use of auxiliary proxies, our method continues to require the measurement

errors (although not the indicators themselves of course) be uncorrelated

across alternate measures, so that it is possible to consistently estimate the

degree of measurement error present in the data. Again, if there exists addi-

tional auxiliary information to set the prior variances, other than the proxies,

the MO model has very small bias, as shown in simulations in Figure 7(c),

where we assume the true measurement error variance is known from auxili-

ary information about the measurement procedure.

Even in this most difficult of settings, MO remains robust. In another set

of simulations, we compare how various estimators perform when both

proxies are correlated with yi. Allowing these simulations to vary the amount

of correlation gives an indication of how various estimators perform in this

difficult situation.10 Figure 8 shows that MO outperforms EIV at every level

of this correlation. When the dependence between the error and yi is weak,

MO almost matches its zero-correlation minimum. Thus, MO appears to

be robust to even moderate violations of these assumptions, especially when
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compared with other measurement error approaches. Interestingly, the denial

estimator can perform better than all estimators under certain conditions, yet

these conditions depend heavily on the parameters of the data. If we change

the effect of xi on yi from negative to positive, the performance of the denial

estimator reverses itself. Since we obviously have little knowledge about all

of these parameters a priori, the denial estimator is of little use.

Since there are gold standard data in these simulations, we can also inves-

tigate the performance of simply discarding the mismeasured data and run-

ning MI. As expected, MI is unaffected by the degree of correlation since

it disregards the correlated proxies. Yet these proxies have some information

when the correlation is around zero and, due to this, MO outperforms MI in

this region. As the correlation increases, though, it becomes clear that simply

imputing the mismeasured cells has more desirable properties. Of course,

with such high correlation, we might wonder if these are actually proxies

in our data or simply new variables.

These simulations give key insights into how we should handle data mea-

sured with error. MO is appropriate when we have a variable that we can rea-

sonably describe as a proxy—that is, having roughly uncorrelated, mean zero

Positive effect of x on y

Correlation between measurement error and y

R
M

S
E

0.05

0.10

0.15

0.20

Infeasible
MI

MO

EIV
Denial

-0.6 -0.4 -0.2 0. 0.2 0.4 -0.6 -0.4 -0.2 0.0 0.2 0.4

Negative effect of x on y

Correlation between measurement error and y
R

M
S

E

0.05

0.10

0.15

0.20

Infeasible
MI

MO

EIV

Denial

Figure 8. Root mean squared error for various estimators with data generated so
that each proxy variable has measurement error correlated with the dependent
variable. On the left, xi has a positive relationship with yi and on the right, it has a
negative effect. Note that both errors-in-variables (EIV; green) and multiple over-
imputation (MO; orange) perform worse as the correlation moves away from zero,
but MO always performs better. The denial estimator can actually perform well in
certain situations, yet this depends heavily on the direction of the relationship. Both
the infeasible estimator and multiple imputation (MI) are unaffected by the amount of
correlation.
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error. Even if these assumptions fail to hold exactly, MO retains its desirable

properties. In situations where we suspect that the measurement error on all

of our proxies has moderate correlation with other variables in the data, it

may be wiser to treat the mismeasurement as pure missingness and use

MI. Of course, this approach assumes there exist gold standard data, which

may be scarce.

The Number of Data Sets to Overimpute

MI relies on simulation to reflect the uncertainty due to missing data and

requires a sufficient number of such in order to do so accurately. The simula-

tions in this case are the number of imputed data sets. There is a large body of

research analyzing the performance of MI as the number of imputed data sets

grows, with a general consensus that somewhere between 5 and 50 imputa-

tions is sufficient to obtain approximately valid confidence intervals. With

MO, we might worry that the increased demands on the imputation model

might require additional imputations. In this section, we perform a simula-

tion experiment to see how our uncertainty estimates perform as a function

of the number of imputations.

To do so, we use the basic design from Monte Carlo Evidence subsection

in BHK, vary the number of imputed data sets, and assess the confidence

interval coverage for the estimated coefficients in the outcome model.11

We present the results in Table 1, which shows that the qualitative results

from MI carry over to MO. In terms of both point estimates and confidence

interval coverage, there are only minor improvements beyond 10 to 25

imputed data sets. The lowest number of imputations can lead to confidence

intervals that are both too narrow and too wide.

The amount of measurement error in a variable increases the amount of

missing information, so we would expect the performance of MO to vary

Table 1. Coverage and MSE for MO by Number of Imputations.

B xi Coverage xi MSE zi Coverage zi MSE

3 .931 .0162 .936 .0147
5 .945 .0157 .959 .0145
10 .944 .0152 .954 .0135
25 .945 .0147 .957 .0132
50 .944 .0147 .953 .0131
100 .948 .0146 .951 .0131

Note: MO ¼ multiple overimputation; MSE ¼ mean square error.
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as a function of the amount of measurement error in the data. It is instructive,

then, to investigate the coverage of the MO approach. In Table 2, we display

the nominal 95 percent confidence intervals as a function of both B and r.

Here, we are using the same simulation design as in the Specifying or Esti-

mating the Measurement Error Variance section of BHK using the correct

value of r in the imputation. As is clear from the table, our intuition is cor-

rect—the coverage performance of MO weakens as the amount of measure-

ment error increases. In fact, when r > .5, the confidence intervals become

strikingly uninformative. This makes sense considering the fact that less than

half of our mismeasured variable’s variance is due to the true value. When r
is at more reasonable values, we see similar results to Table 1 in that the mar-

ginal value of increasing B is fairly low after 10 to 25 imputations.

Concluding Remarks and Further Extensions

This article, taken together with its companion BHK, offers a new approach

to preprocessing data so that applied researchers can attend to the serious

problems of missing data and measurement error scattered throughout most

data sets used in the social sciences. It should be attractive to applied

researchers especially since, after attending to these issues, they can apply

whatever method they would have in the absence of these problems. This

enables social scientists and others to get back to the substantive problems

that drove them to analyze their data to begin with.

The methods offered here are implemented in Amelia (Honaker, King,

and Blackwell 2010) and can be easily combined with other techniques as

part of the same algorithm, most of which we have not been touched on in

these two articles. For example, researchers can choose to put prior values

Table 2. Coverage for MO at Varying Levels of Proxy Error.

r

B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 0.953 0.936 0.936 0.908 0.920 0.919 0.915 0.912 0.907
5 0.953 0.942 0.951 0.955 0.953 0.961 0.965 0.965 0.977
10 0.945 0.958 0.952 0.962 0.975 0.991 0.987 0.994 0.997
25 0.946 0.967 0.968 0.976 0.986 0.995 0.997 0.999 1.000
50 0.952 0.958 0.970 0.978 0.987 0.999 0.999 0.999 1.000
100 0.945 0.965 0.968 0.975 0.994 0.997 1.000 1.000 1.000

Note: MO ¼ multiple overimputation.
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on individual cell values, include features for time series or time-series

cross-sectional data, implement transformations, include many types of

prior information, and evaluate results and judge model fit using a wide

range of diagnostics.
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Notes

1. If a function f(a, b) can be expressed as a family of probability densities for vari-

able a given parameter b, pðajbÞ, and a family of densities for variable b given

parameter a, pðbjaÞ, so that f ða; bÞ ¼ pðajbÞ ¼ pðbjaÞ, then pðajbÞ and pðbjaÞ are

said to be statistically dual.

2. If there are missing values in unit i, we need to alter the definitions of the distri-

butions to account for values in xi;mis that have no corresponding wi.

3. If it were possible for a measurement error model to work in all contexts, without

any auxiliary information to describe the measurement error, the same data set

could answer any question!

4. In this simulation, b ¼ ð0; 1; 0:5Þ and ei � Nð0; 1:5Þ. The additional covariate,

zi, is distributed independent and identically distributed (zi � Nð1; 1Þ). The same

size is 1,000 and there are 1,000 simulations.

5. In these simulations, n ¼ 200, ðxi; yiÞ � N ðm;SÞ, m ¼ ð1; 1Þ, S ¼ ð1 0:4; 0:4 1Þ,
s2

u ¼ 0:5, s2
v ¼ 0:5.

6. In a multivariate setting, this becomes d̂ ¼ ðw1;w2Þ�1
w1; Y where Wj is the set

of regressors using the jth proxy measure for x.

7. In these simulations, similar to previous, n ¼ 200, ðxi; yi; ui; viÞ � N ðm;SÞ,
m ¼ ð1; 1; 0; 0Þ, S ¼ ð1 0:4 0 0; 0:4 1 0 r; 0 0 s2

u 0; 0 r 0 s2
vÞ, s2

u ¼ 0:5, s2
v ¼
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0:5. Thus, the measurement errors are drawn at the same time as xi and yi with

mean zero. While r allows the error, vi, to covary with yi, and across the simula-

tions it is set as one of r 2 f�0:3;�0:1; 0:1; 0:3g. The observed mismeasured

variables are constructed as wi1 ¼ xi þ ui; wi2 ¼ xi þ vi.

8. Similar to the construction of the last simulations, we set n ¼ 200,

ðxi; yi; ui; viÞ � N ðm;SÞ, m ¼ ð1; 1; 0; 0Þ, S ¼ ð1 0:4 0 r; 0:4 1 0 0; 0 0 s2
u 0;

r 0 0 s2
vÞ, s2

u ¼ 0:5, s2
v ¼ 0:5, and sequencing r 2 f�0:3;�0:1; 0:1; 0:3g across

sets of simulations.

9. Here we set n ¼ 200, ðxi; yi; ui; viÞ � N ðm;SÞ, m ¼ ð1; 1; 0; 0Þ, S ¼ ð1 0:4 0 0;

0:4 1 0 0; 0 0 s2
u r; 0 0 r s2

vÞ, s2
u ¼ 0:5, s2

v ¼ 0:5, and sequencing r 2 f�0:3;

�0:1; 0:1; 0:3g across sets of simulations.

10. These simulations follow the abovementioned pattern except they include a

perfectly measured covariate, zi, which determines which observations are

selected for mismeasurement. Thus, we have ðxi; yi; zi; ui; vi; Þ � Nðm;SÞ, with

m ¼ ð1; 1;�1; 0; 0Þ and S ¼ ð1sxy � 0:4 0 0;sxy 1 � 0:2 rsursv;�0:4

�0:2 1 0 00 rsu 0 s2
u0; 0 rsv 0 0 s2

vÞ with s2
u ¼ 0:5 and s2

v ¼ 0:75. We ran

simulations at both sxy ¼ 0:4 and sxy ¼ �0:4. Each observation had probability

pi ¼ ð1þ e3:5þ2zÞ�1
, which has a mean of .25. We used the multiple proxies

approach to estimating the measurement error. For errors-in-variables, we

applied the model as if the entire variable were mismeasured.

11. Here, we set the assumed amount of measurement error to the correct level.
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