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1 Introduction

The bootstrap is a common and powerful statistical tool for numerically computing the standard error of
estimators, that is, a calculation of the uncertainty of functions computed on sample data so as to make an
inference back to the original population from which the sample was drawn. Understanding uncertainty, and
inferential questions, in the context of private data is an increasingly important task within the literature of
differential privacy [7, 20, 15].

We show how to construct an implementation of the bootstrap within differential privacy. Most impor-
tantly, we show that, for a broad class of functions under zero concentrated differential privacy, the bootstrap
can be implemented at no cost. That is, for a given choice of privacy parameter and associated expected
error of some query, the bootstrap can be implemented for the exact same privacy guarantee, resulting in
the same expected error (or sometimes less) in the desired query, but additionally provide the standard error
of that query.

In section 2 we provide a brief overview of differential privacy. Then to describe these results on bootstrap
inference, in section 3 we describe some foundational results on the aggregation of repeated queries under
contrasting privacy and composition definitions. This leads to a tangential result in section 4 on a low-noise
Gaussian mechanism for pure differential privacy. Next we provide a brief foundation on the bootstrap
algorithm in statistics in section 5, before showing our algorithmic construction of the bootstrap using
the mechanisms of differential privacy in section 6. In section 7 we describe how to use the differentially
private estimate of the standard error in the construction of confidence intervals and hypothesis tests, and
then demonstrate this in section 8 with examples using published Census microdata in the style of privacy
sensitive data.

2 Differential Privacy

Social scientists and other human subjects researchers often want to analyze data that contains information
that must remain private, for ethical or legal reasons, or to prevent the loss of trust or even harm to
participants [1]. The increasing ability of linked data collections, the ubiquity of sensors, and the ability
of social media to measure individual behavior in nuance, ensures that such privacy concerns continue to
dramatically increase [4].

Differential Privacy, deriving from roots in cryptography, is a formal, mathematical conception of privacy
preservation [8]. Instead of attempting to produce a “de-identified” dataset, differential privacy allows the
release of statistical summaries, queries or estimates from a dataset, and even allows future data analysts
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to make their own statistical queries of the data. It guarantees that any released statistical result does not
reveal information about any one single individual.

Informally, to satisfy the definition of differential privacy, the distribution of answers one would get with
an algorithm from a dataset that does not include myself must be so close as to be indistinguishable from the
distribution of answers where I have added my own information. Thus I have no reason not to add my own
personal data to a dataset, as no released answers can leak my information. A differentially private algorithm
injects a precisely calculated quantity of noise to any statistical query to mask the possible contribution of
any one individual to the result. It then becomes mathematically provable that no possible combination of
queries or model results can tease out information that is specific to any individual data subject. This is a
nontrivial guarantee — if insufficient noise is introduced (without applying the theory of differential privacy),
then there are known attacks that combine many “aggregate” statistics to infer sensitive attributes of specific
individuals [17, 10, 6].

Using differential privacy enables one to provide wide access to statistical information from a privacy
sensitive dataset without worries of individual-level information being leaked inadvertently or due to an
adversarial attack. There is now both a rich theoretical literature on differential privacy and numerous
efforts to bring differential privacy closer to practice. Large technology companies such as Google [12],
Apple [16] and Uber [19] have started using differential privacy to protect the data of their customers. Most
Census products from the 2020 Decennial Census will be differentially private releases [5]. The PSI (0):
Private data Sharing Interface [14] allows differentially private access to research data in repositories such
as Dataverse [21, 3].

However, the large literature of DP statistics primarily provide point estimates, and few current DP
algorithms exist to provide standard errors or confidence intervals. Those that do exist [7, 15, 20] provide
very noisy estimates of uncertainty, and also draw from the “privacy budget” of the privacy loss parameter,
thus making the release of the original quantity of interest itself noisier.

As a overview of key concepts that will be used in this paper, we show a simple but effective class of
re-identification attacks, then provide the definition of a differentially private algorithm, an example of such
an algorithm, and highlight some key properties that DP algorithms obtain. For a more detailed overview,
Dwork and Roth [9] provide a technical review of the literature, and Nissim et al. [22] a non-technical
introduction.

2.1 Re-identification Attacks

The mean, given by = = Efv 7, like many statistical queries, aggregates individual information into a
larger quantity that appears to lose the individual into the population level information. Often, simple
statistical disclosure limitation heuristics attempt to safeguard privacy by not releasing means that contain
fewer than some threshold number & of individuals, with the idea that if k£ is large enough, the individual
level information is lost in the sum. However, each individual contributes exactly z;/N to the mean function.
Consider a setting where = are student test scores, and T is released periodically for classes. If I happen to
know that Alice moved into a class at a particular time (and no one else changed), and see the release Z;
just before she joined and Z;y; just after, then Alice’s data is the sole reason that the mean score changed,
and I can back out Alice’s private test score exactly.! This style of attack, where the difference between
two seemingly benign aggregate statistics can leak individual information is . We could for example release
regression coefficients on large subsets of the data, but if they are carefully subsetted by geography, time, or
other predicates to add or remove one individual then the difference between regressions exactly reveals that
individual’s information. In general, an increasing host of sophisticated re-identification attacks exist that
use auxiliary information or combinations of innocuous aggregate queries to precisely re-identify individual’s
information from datasets.

1n this case, Talice = Ni+1Tt+1 — NeZt.



2.2 Indistinguishability and Differential Privacy

Differential privacy states that the distribution of answers released by an algorithm should appear almost the
same regardless of the inclusion of any one possible observation. Formally, for any two neighboring datasets,
X and X’ that differ only in one observation, then a function M is differently private if:

PrT(M(X))=1] < e Pr[T(M(X')) =146, VT,X X (1)

where T'(.) is any decision rule based on the function output. This says that the distribution of the outputs
of a function, and their inferences or consequences are close, regardless of any one observation in the dataset.
Thus any observing the output of a differentially private release can not distinguish whether one observation
was in the dataset, or it’s values. Thus any individual should feel safe to be included in the data, since their
information will not effect any answers.

The particular definition of closeness or indistinguishability in equation 1 uses two privacy loss parameters,
€ and 0, which formalize what it means for two distributions to be close. Specifically, the ratio of the
distribution of outcomes must be within a factor of e where € is typically 0.5 > ¢ > 0.01, and § is some
additional very small factor commonly § < 1e~° or less than 1/N. When 6 = 0 then we refer to this as pure
differential privacy and for 6 > 0 this is approximate differential privacy. Other definitions of the closeness of
the distributions use the Kullback-Leibler divergence or the Rényi divergence of the distributions, which give
alternate definitions named concentrated and zero-concentrated differential privacy respectively, and which
we will see permit slightly different algorithms and composition theorems, and label their parameter p.

Key here is that the relevant parameter, be it €, or (¢,0) or p, measures the total worst-case informational
leakage or privacy loss from the dataset. If there is a limit to the allowable privacy loss, this is referred to
as the privacy budget.

2.2.1 Post Processing and Composition

Differential Privacy is a definition that an algorithmic mechanism can either be proven to satisfy or not
satisfy. Statistical releases from algorithms that satisfy DP have two important key properties. First, they
are immune to post processing, which means a release from a differentially private algorithm can undergo any
transformation and it is still remains differentially private (with the same € value). Second they compose,
which means that if a larger algorithm is constructed from pieces which are each themselves differentially
private, then the total algorithm is differentially private, and the grand privacy loss € of the larger algorithm
can be obtained as a function of the constitutent €1, ..., € privacy loss parameters of the underlying peices.
In the simplest form, this just additive, in that € = >_ ¢;, but more advanced composition rules can lead to
lower total privacy loss, and thus more queries, or less noisy queries, for the same privacy budget.

2.2.2 Sensitivity and the Laplace Mechanism

The Laplace is a convenient distribution to use for this noise, given the construction of the definition of
differential privacy. The Laplace has distribution function:

Frapiace(x|b, j1) = 1 exp( Jz =l ) o

with mean p, and variance 2b%. The Laplace is a mirrored, and thus symmetric version of the exponential
distribution. The exponential is common to survival and event history models, which use its memoryless
distribution?, which we are also about to exploit. To make a continuous variable differentially private, we
add a draw from a mean zero Laplace, with parameter b as:

b= = (3)

€

2The hazard function of an exponential waiting time, as the ratio of two exponentials, is a constant.



Where € is our privacy loss parameter as previously described and A is a quantity known as the sensitivity
which calculates the worst case change in a function that could occur from changing one observation in the
data. In the example of a mean of a variable that has range R, this is A = R/N, the change in the mean
that would occur from moving an observation from the minimum value to the maximum value. Sensitivity
is key to many differentially private algorithms, as it is the largest effect one persons information could have
on a statistical release, and thus noise needs to be calibrated to drown out this magnitude of effect.

From this, our differentially private mean, M (X), which combines the "true” sample mean with Laplace
noise, becomes:

M(X)=X+Y; Y ~ frapiace(b = AJe, u = 0) (4)

To check this mechanism meets the definition of differential privacy, consider some probability of any outcome,
z. The ratio of this probability between two adjacent datasets, is given by:

—e|X—z]
A

priM(X) = z] _ e, > ee\x CHESE CHU ee\xA—xw <o (5)
PO = 2]~ I
the last step following since we know A > |X’ — X| by the definition of the sensitivity. It thus follows that
PrM(X) = z] < e“Pr[M(X') = z], thus meeting the definition of e-differential privacy (in this case, with
parameter 6 = 0). For other continuously valued summary statistics, the same Laplace mechanism works
for preserving privacy, however, the analytic form for the sensitivity, A, will change by statistic.
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Figure 1: Two Laplace distributions, for two adjacent datasets X and X'. The definition of e-differential
privacy requires the ratio of M(X)/M(X') is not greater than e for all points along the x-axis. Thus for
any realized output z — for example here, z = 1.3 — we can not determine that X or X' were more likely to
have produced z.

3 Aggregation of Repeated DP Statistical Releases

Consider an analyst receives two differentially private estimates, m; and ms, of the mean of the same variable
from the same dataset. Each has been released using the Laplace mechanism, using privacy parameters €;
and ey respectively.

Rather than relying on either answer, they want to post-process the releases to construct a better answer.
It is intuitive to average them, since they are both estimates of the same quantity, however, if one € is greater
than the other, then the released statistic has less noise and less expected error, and thus should be given
greater weight. The efficient answer, in the statistical meaning of unbiased and minimum variance, for a



sequence of means my,--- ,my, is given by:

k
= Zwimi§ Wi = ——— — (6)
i=1 Z_j:l €;

where we are summing together a weighted mean, and the weights are inversely proportional to the variances,
which here are simply a function of e. Moreover, while each release has variance from the Laplace of 2(A/¢;)?
(where A is the sensitivity of the particular mean), this new mean estimate has variance:

(7)

Weighting by inverse of the variance is well known in measurement theory and particularly in approaches to
the problem of measurement error. A proof in the context of differential privacy is given by [18].

3.1 Equipartition

Consider then an analyst wants to get an estimate of the mean of a variable while staying within a global
privacy parameter of some definition of privacy loss; we will consider both the € of pure differential privacy
(DP) and p of zero concentrated differential privacy (zCDP) [2].

The simplest approach is to ask one query exhausting the entire privacy parameter, for example:

Method 1: mpp = sz + L£(0,A/e); o?(mpp) = 2(A/e)? (8)
N
m,cpp = Z 0 A2/2p); 02(mchp) = A2/2p (9)

Where £ and N represent Laplace and Normal distributions respectively.

A second approach is to partition € or p to make k queries of the mean of some variable resulting in
releases mq, -+ - ,my. Under simple composition, for the i-th query we assign €; < €/k. In the limit for large
k, under advanced composition we can instead use ¢; < €/4/k1n(1/4), but have to use 6 > 0. Under zCDP
we can use p; < p/k. If the analyst then recombines these answers, we get an estimator for the mean as:

L 1
Method 2: m' =z Z:mi; (10)

where the variance of the estimate is determined by the composition method used:

k
Basic Composition (¢, 0)-DP: o?(m*) = 2A? Z(l/k)2(k/e)2
j=1
=2k(A/€)*n =k o*(mpp) (11)
k
Advanced Composition (¢, §)-DP: o?(m*) = 2A2Z (1/E)?(\/kIn(1/68)/€)?
j=1
=2In(1/6)(A/€)* = n(1/6) o*(mpp) (12)
A2 & k
zero Concentrated DP (0, p)-zCDP: o?(m*) = 5 Z(l/k) ~ =A?/2p=0*(m.cpp) (13)
p
j=1



We see here the expansion in the variance from partitioning the privacy parameter, and recombining the
releases, compared to the conventional one-shot release given in equation 8. Under either form of composition
under differential privacy, we always get an answer with higher error than if the budget had been assigned
to one single query (inflation factors in red). Under zero concentrated differential privacy we get exactly the
same variance as the one-shot release.

Thus under composition with zero concentrated differential privacy, we get exactly the same expected
error from releasing k queries equally partitioning the privacy parameter, as we would if we had simply made
one encompassing query. This is a central point that will be utilized in the following work so we formalize
it as:

Remark 1 Consider two zero Concentrated Differentially Private estimators of an additive function,
m and m*, where m is one query using p and m* is the average of k such queries each using p/k. Then
o%(m) = o%(m*).

4 A Pure-DP Lower-noise Gaussian Mechanism

In addition to the main remark, which will subsequently draw our attention toward zCDP, there are additional
valuable points to explore about the partitioning of a query under pure differential privacy.

First, the distribution of the one-shot release, m, in equation 8 is the Laplace, however, the distribution
of m*, the averaged value of k Laplace releases tends to a Gaussian, asymptotically as k increases, due to
the central limit theorem.

Second, with basic composition the variance goes up by a factor of k. At first this seems that partition
coupled with basic composition is an inefficient means of release, however, recall the standard Gaussian
mechanism in differential privacy has variance 21n(1.25/8)(Af/€)?. Figure 2 shows the value of In(1.25/6)
is on the order of 10 to 20 for typical values of §. So for k < In(1.25/0) the average of k Laplace queries
has lower error than the Gaussian mechanism, as well as being pure differentially private, rather than using
approximate differential privacy as the conventional Gaussian mechanism requires.

The average of the Laplace approaches Normal-
ity quite speedily. Figure 3 shows two methods of
judging the speed of this convergence. We take a
hundred draws from the average of k Laplace draws,
where k goes from 1 to 20. From this, we test
whether the 100 draws using the average can be
distinguished from a Normal distribution. The top
figure shows the fraction of the time the Anderson-
57 Darling and the Shapiro-Wilk tests fail to reject the
(incorrect) null hypothesis that the data was drawn
from a Normal distribution (here using p = 0.05).
By the time we averaging 10 draws from the Laplace,
both tests are failing to reject the hypothesis that
the data actually came from a Normal distribution
over 90 percent of the time (90.8 and 92.7 respec-
tively). These p values are approximations, so for a
stronger test we use the following numerical exper-
iment. We create two datasets of size 100. One
dataset is actually drawn from the Normal, and

Figure 2: Factor size of In1.25/8 as a function over the other created by averaging k draws from the
typical values of 6.
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Laplace. We then use the test statistic to try to

judge which of the two datasets is more likely to be

the true data drawn from a Normal. For small k the
correct dataset is commonly picked, but by k of 10, the Normal dataset is being chosen less than 55 percent
of the time, and more than 45 percent of the time the data from the average of Laplaces is being judged as
more likely to be Normal than the actual Normal data. Thus we conclude the average of 10 Laplace draws
is functionally numerically indistinguishable from draws from a Normal.

Normality Tests for Averages of Laplace Draws
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Figure 3: Tests of deviation from normality for datasets of 100 observations of the average of k Laplace
draws. The top graph shows the fraction of time tests fail to reject the null hypothesis that the data came
from a Normal distribution, across an increasing range of k. The bottom graph shows the fraction of the time
a dataset actually drawn from Gaussians is correctly selected in a choice between a Gaussian and average of
k Laplace draws. By both measures, the k-average Laplace is appearing numerically indistinguishable from
the Normal for k of 10 or greater.

This provides a very useful mechanism for pure differential privacy that is numerically indistinguishable
from the Gaussian, but has both lower noise, and the ease of pure differential privacy.

Remark 2 Consider two estimators of an additive function, m and m*, where m is (¢,0) — DP by the
Gaussian mechanism, and m* is the average of k independent (e/k,0) — DP releases from the Laplace
mechanism. Then o%(m*) < o%(m) Vk < In(1/8) while m* is both approzimately Normal for k > 10,
and (e,0)-differentially private.




As one final note, in the case of advanced composition in equation 12, we return to approximate differential
privacy, but the average of k Laplace draws appears to have variance scaled by In1/§, rather than the slightly
larger In1.25/¢ typically employed for the Gaussian mechanism.

5 Introduction to the Bootstrap

The bootstrap is part of a larger family of sampling techniques, including the jackknife and subsampling, used
to numerically simulate the sampling distribution of a statistic §. Generally, resampling is often employed
as an alternative to analytical techniques for statistical inference when, for example, no analytical solution
exists for the variance of the estimate, the theoretical assumptions underlying the sampling distribution do
not hold, or the sample size n is too small for the asymptotic properties of the sampling distribution to hold.
Thus, the bootstrap is an attractive technique for understanding the variance of § when the analyst is unable
or unwilling to analytically evaluate its sampling distribution.

For dataset X = {x1,x9,...,2,}, a bootstrap sample X* is constructed by randomly drawing observa-
tions, each with probability 1/n, from X with replacement, and 6* is the estimate learned from X *, referred
to as the bootstrap replication of 0. Figure 4 shows the probability that any observation is copied any
particular number of times in a resampled dataset of 1000 observations. We see about a third of original
observations are omitted entirely, a third are sampled exactly once, and the rest are sampled multiple times.

The sampling distribution for € is simulated by
evaluating a large number, say J = 1000, bootstrap
replications of 6. The estimated standard error of 03677 0.3681
0 is then the sample standard deviation of the J
bootstrap replications [11].

0.3
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As 1mph(zd in (15), the bootstrap provides an esti- Figure 4: Probability that observation x; is sampled

mate of 6 itself in addition to its variance. This is with given frequency into bootstrap sample x* (Here

commonly referred to as bagging, Or.bootstrap @997~ the probabilities are shown specifically for a dataset of
gation [13], and 6* as the bagged estimator. When 6 1000 observations.)

has a symmetric sampling distribution then Ef* =0
while otherwise #* is biased but has sufficiently lower
variance to obtain lower mean squared error [13].

6 Composition for the Bootstrap

To show how privacy composes over the bootstrap, we first illustrate two naive approaches, and then we will
build from these approaches to achieve a better result with lower noise.



6.1 Naive sensitivity factor

In the simplest case, imagine we want k bootstraps of a statistic given by function f(.), which has sensitivity
A, from budget p. Assume this function is additive®. As seen in Figure 4, very few observations ever occur
in a bootstrapped dataset with more than 5 copies (and only 3 tenths of a percent of the data is copied
five times). If we imagined a slightly bounded bootstrap, that limits any observation to appear at most j
times (say 5), then the new sensitivity is at most jA. That is, if an observation in the original dataset was
changed, it might change up to j observations in the bootstrapped dataset, and lead to a worst case change
is jA of the function result.

6.2 Naive Secrecy of the Sample

The p parameter in zCDP is amplified by subsampling the original data, as in secrecy of the sample. If
observations have probability p of being included in the data, then the effective parameter, p/, is:
o= (16)
We can also see from figure 4 that some of the original observations are not included in the bootstrapped
dataset. Each observation has a 1/n chance of being resampled for any particular row of the new dataset.
There is then a (1 —1/n)™ chance of the i-th original observation not appearing anywhere in some particular
bootstrapped dataset. In the limit:
lim (1 —1/n)" =e™* (17)
n—oo
Therefore, e~! fraction of the data does not appear in the bootstrapped dataset. We could use secrecy of
the sample to improve on our previous privacy loss calculation. If we have a limited bootstrap with at most
j copies of any observation, can calculate a function with sensitivity A in the original dataset, then the
variance is:
(A (1 —e )

g (18)

o? (m) =

6.3 Private Bootstrap Construction

In summary, in the naive approach to bootstrapping with differential privacy, the potential repetition of
observations leads to an increase in sensitivity of the calculated function, however, the stocastic omission of
some observations leads to a boost in the functional privacy-loss parameter. We now show that with more
careful design and analysis, under zCDP, these two factors can exactly cancel each other, that is any increase
in sensitivity can be exactly offset by the boost in the functional privacy-loss parameter.

Consider the following implementation of the bootstrap. Instead of building one bootstrapped dataset
conventionally by resampling, we are going to partition the original data into subsets according to how many
times that observation has been selected to appear in the bootstrapped version. Conceptually, it is as if in
figure 4 all the observations in each column are put in separate datasets.

We build a set of datasets X = {Xo, X1,...}. Let R be an N-dimensional draw from the multinomial
distribution as:

r={ry, - ,ry}r; = Mult(N,m;);m =1/N Vi (19)
We partition each observation into one of the datasets by this multinomial draw.

Yy €X;, <= |r=j]=1 (20)

3That is, of the class f(X) = f(X1) + f(X2) VX1 W X2 = X. This includes all functions of the form f(X) = Zf;l fzs)
including counts and means.
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Figure 5: Schematic of partition of original dataset Y across sequence of datasets Xg, X1, .. ..

Thus the probability that the i-th row is placed in the j-th partition is:

Prtyy € ) = () 4/ (1= 1/ (1)

This is shown schematically in figure 5. The original dataset Y is divided among datasets X;, with the
probability (and thus size of each X;) following the density of figure 4.
We partition p as a function of ¢ and p; to give us a functional parameter p’ as:

pi = ipip = p; = ipip(1/p}) = ip/pi (22)

which still crucially results in Y p; = p. That is, the partition exactly exhausts the privacy loss budget.

The i-th dataset now contains observations that would be repeated ¢ times in a particular bootstrapped
dataset. Thus we can calculate the function on each partition and multiply by ¢ to see the partial contribu-
tions to the bootstrapped value.* On the i-th dataset we calculate:

M; =i f(X;) +N(0,07) (23)
A2 (AAN2 2

where o? = (ZA,) = pl(z'A) = Z‘PiA* (24)
2p; 2ip 2p

Which gives us the partial contributions of each subdataset to the grand sum. We then compute:
M=) M, (25)
Which itself has variance:

2 2
ﬂM:ZﬂMme%:% (26)

Thus the variance from the function run on our bootstrapped construction is the same variance as if we had
run the function on the original data. This is a central result so we set it out as:

4In the case of the mean, it’s important to note the function f(X;) is still the partial contribution to the mean 1/N Zyj ex; Yi
and not the mean of X; e.g. 1/N; ZUjeXi Yj-

10



Remark 3 Consider two zero Concentrated Differentially Private estimators of an additive function,
m and m’, where m is the query run on a dataset X using p and m' is the query also using p on a
bootstrap of dataset X. Then o*(m) = a%(m’).

6.4 Key Result

In summary, under zCDP, by remark 3 the sensitivity of a function on the original data, and the sensitivity
of the function on a bootstrap of the data are the same. By remark 1 the expected error of asking a query
once using all p, and the error of asking k queries using p/k each, is the same. Therefore, when using the
Gaussian mechanism on an additive function:

e Releasing a single query at p, has the same privacy loss as releasing k queries at p/k on k bootstraps
of the original data.

e The Average of those k bootstrapped answers has the same utility in squared error as the single query.

e However, the distribution of the bootstraps also provides a standard error estimate at no additional
loss in privacy.

More succinctly, we set this as our first result as follows:

Result 1 Consider a differentially private release, m, of an additive function on sample dataset X using
2zCDP with some p, and m*, the average of k such queries each using p/k on a bootstrap of X. Then
o%(m) = o?(m*).

7 Inference with Confidence Intervals

If an estimate has been calculated on a sample, the inferential task of the confidence interval is to provide
bounds, with some associated guarantee, depicting the uncertainty of the population value that has been
estimated from the available sample. Commonly, confidence intervals for means (drawing on the Normal
approximation of the sampling distribution given by the Central Limit Theorem) are given by:

Cli—o(?) =7 £ 25 5(7) (27)

Where 1 — « is the coverage, that is, the fraction of the time the confidence interval is expected to contain
the population value, and zg is a constant from the cumulative normal and s(Z) is the estimated standard
error. Thus an intermediate step is to calculate a standard error, which is an estimate of the variance that
would be observed across sample estimates computed on repeated samples.

Again, a primary use of the bootstrap is to estimate the standard error by the standard deviation of
the bootstrapped values. However, we now tackle the problem that the standard error of privacy preserving
bootstrapped values have been inflated by the necessary noise of the Gaussian mechanism.

11



7.1 Notation

As is common notation, let 0?(z) be the variance of a random variable z, and s?(z) be the sample variance
of k observed realizations.

k —\2 k
s%(z) = =T where Zz = i ;zz (28)
Let f = {f1,f2, -+, fx} be the values of a function, such as the mean, computed on k bootstraps of the
data, and similarly m = {mj, ma, -+ ,my} the zCDP releases each using the Gaussian mechanism with

privacy parameter p/k, all having mean m. Following the notation originally introduced in equation 10, let
the bootstrap averaged (bagged) estimator be m* = m. Let n = {my — f1,m2 — fa, - ,my — fr} be the
errors which we know are drawn from a mean zero Gaussian distribution with variance (Ak/2p).

7.2 Decomposition of the Variance

Since n is independent of f, the variances are additive, so we know:
2 _ 2 2 _ 2
o”(m) =o”(f) + 0" (nlp/k) = o (f) + —— (29)

The observed variance of m across k bootstraps, s?(m), is the feasible estimator of the variance of the
bootstrap releases, 0?(m). That gives us an (unbiased) estimator of the variance of f as:

"9 2 A%k
#) = s2m) = 5 (30)
Since for the mean, o2(f) = sd(z)/v/N, then this also gives us an estimate of the standard deviation of the
individual-level variable in the population, which may be a summary statistic of interest to the analyst.

We know that in any particular set of bootstraps, s?(n) might be larger or smaller than o?(n). On
occasions where it was small in a particular set of bootstraps, then the estimator in 30 will underestimate
o2(f). As we will see, underestimating this may result in narrower confidence intervals with lower than
promised coverage. So rather than using the expectation of o?(m) we also consider a conservative lower
bound.

The sampling distribution of the sample variance of the Normal is Chi-squared, with & — 1 degrees of

freedom,” specifically:

o*(n)

s°(n) ~ Xi—1m

We can compute the critical value of the Chi-squared, ¢, defined such that:

/ Eoi=a (32)
0

And use:

o*(n)
k—1

o2(n) = cq

(33)

As a conservative bound of the s?(n). That is, 1 — a percent of the time, the sample variance of the noise
added in the k bootstrap releases will be larger than the value in equation 33.

5This follows directly from the Chi-squared being the distribution of the sum of the squares of Normal draws.
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Using this conservative estimate, and drawing on eq. 30, we can create a revised and conservative estimate
of o2(f) as:

A%k co
~ 2% .2 _ (&3
o (f7cl)é,)_s (m) 2p k_].

(34)

Where here conservative has a meaning adjusted by a parameter such that we expect o fraction of the time
that the actual o(f) is less than 62*(f,a’). Note that for this conservative estimator, the adjustment term
cor/(k—1) is the only difference from the previous unbiased estimator in eq 30. For ¢, = k—1 we obtain the
unbiased estimator in 30, while the most conservative this estimator could be would be ¢, = 0 which reduces
our estimator to s?(m) and simply uses the standard deviation of the noisy privacy preserving bootstrapped
releases as the standard error. Values k—1> ¢, >0, correspond to other values of o/ as given by equation 32.

7.3 Confidence Intervals

While we are releasing k draws of m, our best estimator for the mean is m* = m, which has its own variance.
This can be estimated as:

A%k ey } A2 A2<kca/ _1) (35)

52" (m*, car) = 67 (f, car) + 0°(n|p) = [Sz(m) - 20 k-1 2% s(m) — 20 \k—1
Since m* is composed of f which is asymptotically Normal, and n which is exactly Normal, then m* is
asymptotically Normal and we can use a conventional confidence interval of:

Chi—a(m") = m" & 237/3% (" car) (36)

Where again, « sets the desired coverage of the confidence interval and o’ sets our conservative parameter,
that is, how often our estimate of o(f) may be under reported; increasing values of o/ lead to decreasing
values of ¢, and wider confidence intervals.

We turn now to compare the coverage performance at three
specifications: [1] our unbiased estimator with ¢, = k — 1,
[2] a conservative estimator where o’ = 0.05, and [3] a most
conservative estimator where o' = 0 (= ¢, = 0). We simu-
late k bootstrapped samples from a sample of size 500, and on T
each release a differentially private mean using the Gaussian e ‘ ‘ ,—‘}ﬁ
mechanism with privacy loss under zCDP of p/k. In Figure 6 03 -02 -01 00 01 02
we show one example of the distribution of k = 50 bootstraps, Estimates Across Bootstrap Replications
each using p = 0.5/50. The true population mean is shown as
the red dashed line at zero, and the true sample mean the red Figure 6: Simulation of fifty differentially
solid line. The average of the bootstraps, m* is shown in blue, private bootstrap means with resulting con-
along with the confidence interval we can generate using equa- fidence interval (red) and true population
tion using the unbiased variant. Here in this exemplar both value (blue).
the true population mean and the sample mean are contained
within the confidence interval.

In the left in Figure 7a, we show the estimates of the standard error across 500 simulations at variable
numbers of private bootstrap replications, for our unbiased, conservative, and most conservative confidence
intervals. The dotted lines represent the 90% range over the simulations. The horizontal blue line is the
true standard error of the mean. We see the unbiased estimator hits this line on average, but often gives
standard errors far too small. At approximately 50 bootstrap replications, we observe that the conservative
and most conservative estimates are never smaller than the true value, thus any CI’s generated would not
have coverage that was too small.

Frequency

0 2 4 6 810
l

13



°
2t —
0.20) . >
_ — Most Conservative S
o
o .
o — Conservative <
% 015 Unbiased B o
=} S o
= w
7 s
%0.10 P SORTPTRRTRPER TR g .
5| g e 3 — Most Conservative
B I B T S 8 i
S — Conservative
i) .
= 3 — Unbiased
0,00k « + e e @
0 50 100 150 200 0 50 100 150 200
Number of Bootstrap Replications Number of Bootstrap Replications
(a) (b)

Figure 7: Private bootstrap estimate of the mean and its standard error.

In the right in Figure 7b we show the coverage of the three confidence intervals, that is, the fraction of the
time the simulated confidence interval contains the true value. Here we depict 95 percent confidence intervals.
The interval constructed with our unbiased estimator covers the true value substantially less than 95 percent
of the time and this grows worse as the number of bootstraps increases. However our conservative confidence
interval has greater than 95 percent coverage (as does the most conservative variant). The conservative
interval, in this example for a mean of 500 observations is around 1.5 times larger than the unbiased variant,
so we see that greater than promised coverage can be obtained for a modest increase in the confidence interval
span.

8 Example: Releasing Mean Age from US Census Data

We demonstrate the privacy-preserving bootstrap by estimat-
ing the mean of 500 observations sampled from the US Census
Public Use Micro Sample (PUMS) 5 percent file for Califor-
nia. We use the variable age clipped to the interval 0 to 100. = = ” p = =
We use p = 0.50 and perform the algorithm with 50 bootstrap Release Value
replications, meaning that the privacy preserving mean learned
from any one bootstrap sample is obtained with p = 0.01.

In Figure 8 we create 1000 “oneshot” releases of the mean
of age using the full p = 0.50 and compare the distribution to = - ” = = =
1000 simulations of the bootstrap averaged answer (again of 50 Release Value
bootstraps in each simulation) to show visually our key result
from section 6.4 that the distributions of the released answer
are the same, for the same privacy loss parameter, regardless
of whether the bootstrap or the common one-shot approach is
employed.

However, crucially, the bootstrap also allows us to estimate the standard error in this mean, and thus
derive confidence intervals. In Figure 9a we show the distribution of standard errors, that is, \/62*(m*, co/),
for our [1] unbiased estimator (cos = k—1), [2] conservative estimator (o = 0.05), and [3] a most conservative
estimator (o’ = 0). The “true” standard error® is shown as the vertical dashed line. We see the unbiased

One Shot DP Release

Density

00 02 04

Bootstrap DP Release

Density

00 02 04

Figure 8: Distribution of Bootstrap gen-
erated releases against simple one-shot re-
leases.

6Computed using the variance of the age variable in all the PUMS California observations and the known variance of the
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standard error (in red) often has standard error below this value. There is even a mode of observations
at zero where the right term in equation 30 is greater than the left term. The density of the conservative
estimator (blue) is shifted to the right, as we are being more conservative in how much observed variance in
the bootstrap distribution we are attributing to the differentially private mechanism. The most conservative
estimate (green) shifts this further still.
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Figure 9: Distribution of DP mean releases from oneshot release and from the bootstrap release.

In Figure 9b we depict the z-scores of “true” mean in the PUMS California dataset, against differentially
private estimates generated from samples of size 500 and privacy loss parameter p = 0.5. That is, if m” is the
mean in the dataset, from which a sample of 500 is taken, and then those 500 observations are bootstrapped
to create 50 datasets from which the bootstrap average m* and standard error are computed, then the
z-score:

* T
6-2* (m*7 ca’)

tells us how many standard errors the true value is from the estimated value, or in other words, how many
standard errors wide our confidence interval would have to be to contain the true value. If for example,
z > 1.96 then a 95% confidence interval using this estimate and standard error would not contain the
true value. We plot the entire distribution of z-scores for 1000 simulations against the standard normal as a
reference distribution. If the z-score distribution matched the reference distribution, any confidence intervals,
at any desired level of confidence, would have exactly the right coverage. If the distribution is wider than
the reference distribution we have lower than desired coverage, and if more condensed than the reference we
have conservative coverage. For the unbiased distribution, the small standard errors we previously saw, are
creating more mass in the tails (more high valued z-scores) than a standard normal. For example, for 95%
confidence intervals constructed using the unbiased standard errors, only 80.1% of the confidence intervals
contain the true value, so we have improper coverage.

In contrast, the conservative z-values are slightly more condensed than the reference distribution, so the
confidence intervals created will be slightly larger than needed. In this example, across the 1000 simulations
the 95% confidence interval contained the true value 97.1% of the time. The condensing of the z-scores is
can be seen to be even more profound for the most conservative estimator. Here the 95% confidence intervals
contain the true value 100% of the time.

Gaussian noise in the differentially private mechanism.
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9 Conclusion

Differential Privacy makes releases of queries on sensitive datasets available to analysts, with formal bounds
on the privacy loss from the query. However, often an analyst is not interested in the exact value in the
sample data, but rather an inference back to the true value in the population. Confidence intervals, and other
related techniques for inference, typically require a measure of uncertainty in the central estimate, such as
the variance/standard error. If we see this as a separate function to be estimated on the data, a conventional
differentially private approach would require us to partition the privacy loss parameter, to spend some on
this on the calculation of uncertainty” and accordingly result in a more noisy release of the original quantity
of interest.

Instead, here we show that the variance/standard error can be obtained by post processing on the original
function computed on bootstrapped datasets. Under zCDP, this results in an answer that has no utility loss
compared to the one-shot approach, but gives a standard error “for free”, that is, at no cost to the privacy
parameter, and from which we can construct confidence intervals with conservative coverage. Because we
are only spending the privacy budget on the original function of interest (albeit divided across bootstrapped
datasets), and deriving the uncertainty by post processing, we can obtain not just the differentially private
release, but a valid confidence interval for that value.
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